You are currently logged in as an
Institutional Subscriber.
If you would like to logout,
please click on the button below.
Home / Publications / E-library page
Only AES members and Institutional Journal Subscribers can download
Digital audio effects are widely used by audio engineers to alter the acoustic and temporal qualities of audio data. However, these effects can have a large number of parameters which can make them difficult to learn for beginners and hamper creativity for professionals. Recently, there have been a number of efforts to employ progress in deep learning to acquire the low-level parameter configurations of audio effects by minimising an objective function between an input and reference track, commonly referred to as style transfer. However, current approaches use inflexible black-box techniques or require that the effects under consideration are implemented in an auto-differentiation framework. In this work, we propose a deep learning approach to audio production style matching which can be used with effects implemented in some of the most widely used frameworks, requiring only that the parameters under consideration have a continuous domain. Further, our method includes style matching for various classes of effects, many of which are difficult or impossible to be approximated closely using differentiable functions. We show that our audio embedding approach creates logical encodings of timbral information, which can be used for a number of downstream tasks. Further, we perform a listening test which demonstrates that our approach is able to convincingly style match a multi-band compressor effect.
Author (s): Grant, Kieran
Affiliation:
University of Glasgow
(See document for exact affiliation information.)
AES Convention: 155
Paper Number:10663
Publication Date:
2023-10-06
Import into BibTeX
Session subject:
Signal Processing
Permalink: https://aes2.org/publications/elibrary-page/?id=22244
(356KB)
Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.
Grant, Kieran; 2023; Style Transfer for Non-differentiable Audio Effects [PDF]; University of Glasgow; Paper 10663; Available from: https://aes2.org/publications/elibrary-page/?id=22244
Grant, Kieran; Style Transfer for Non-differentiable Audio Effects [PDF]; University of Glasgow; Paper 10663; 2023 Available: https://aes2.org/publications/elibrary-page/?id=22244