AES E-Library

Real-Time Finite-Difference Method Physical Modeling of Musical Instruments Using Field-Programmable Gate Array Hardware

A real-time simulation of physical models of musical instruments has applications in a variety of situations where a proposed physical change needs to be instantly auralized. The compactness and computational power of Field Programmable Gate Arrays make it possible to implement Finite Difference methods in the simulation. These methods are based on a discrete representation in both the spatial and time domains of the partial differential equations that represent the physical behavior of the instrument. However unlike large computer simulations, the real-time requirement necessitates special ways of representing the simulation. The authors illustrate this approach using a string-excitation model of a North American five-string banjo, which includes five strings, a membrane, and air cavity. Three examples show how real-time models can be used by musicians in a live-music setting, researchers exploring instrument acoustics, and instrument builders in the process of making design decisions.

 

Author (s):
Affiliation: (See document for exact affiliation information.)
Publication Date:
Permalink: https://aes2.org/publications/elibrary-page/?id=18058


(652KB)


Download Now

Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.

Type:
E-Libary location:
16938
Choose your country of residence from this list:










Skip to content