NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1447513
Record Type: Journal
Publication Date: 2024
Pages: 24
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2363-8761
Embodied Magnitude Processing: On the Relation between the SNARC Effect and Perceived Reachability
Nadine Koch; Johannes Lohmann; Martin V. Butz; Hans-Christoph Nuerk
Journal of Numerical Cognition, v10 Article e10885 2024
Magnitude information, for instance, regarding weight, distance, or velocity, is crucial for planning goal-directed interactions. Accordingly, magnitude information, including numerical magnitude, can affect actions: Responses to small numbers are faster with the left hand than the right and vice versa (hand-based SNARC effect). Previous experiments found an influence of effector placements on the SNARC effect but also an influence of the mere distance between effectors and numbers. This indicates a sensorimotor grounding of space-number processing. In the current study, we investigated this grounding by probing the SNARC effect close to and far from the hands. We used a magnitude comparison task with a fixed standard of 5 (smaller numbers 1, 2, 3, 4; larger numbers 6, 7, 8, 9) and a sagittal response arrangement to measure hand-based and sagittal SNARC effects for digits presented at different sagittal distances to the hands, i.e., in peripersonal and extrapersonal space. A significant sagittal SNARC effect was found, with the largest effect size in extrapersonal space. Meanwhile, the hand-based SNARC effect appeared only descriptively, with the largest effect size between the hands, i.e., in peripersonal space. Additionally, a purely spatial congruency effect surfaced, prioritizing responses with the hand closer to the number. Together, these results emphasize that responses in simple decision-making tasks can be influenced interactively by a multitude of task-relevant axes and relative spatial locations, including effector placement and stimulus placement, as well as number magnitude.
Leibniz Institute for Psychology. Universitatsring 15, Trier, 54296, Germany. e-mail: support@psychopen.eu; Web site: https://jnc.psychopen.eu
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A