NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1443107
Record Type: Journal
Publication Date: 2023-Mar
Pages: 9
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: EISSN-1938-1328
Foregrounding the Code: Computational Chemistry Instructional Activities Using a Highly Readable Fluid Simulation Code
Gianmarc Grazioli; Adam Ingwerson; David Santiago Jr.; Patrick Regan; Heekun Cho
Journal of Chemical Education, v100 n3 p1155-1163 2023
Computational chemistry instructional activities are often based around students running chemical simulations via a graphical user interface (GUI). GUI-based activities offer many advantages, as they enable students to run chemical simulations with a few mouse clicks. Although these activities are excellent for introducing students to the capabilities of chemical simulations, the disadvantage is that the students' experience is not representative of how professional computational chemists work. Just as it is important that students in an organic chemistry instructional lab gain hands-on experience with equipment commonly used by professional organic chemists, students of computational chemistry must gain hands-on experience with coding, as professional computational chemists do not rely on GUIs; we write code. Motivated by the need for instructional activities that provide hands-on experience with computer code, a pair of activities were created around a free lightweight (runs on standard laptops) open-source Lennard-Jones (LJ) fluid simulation code written in Python, a programming language that prioritizes readability. The first activity, aimed at undergraduate physical chemistry lab courses, involves students writing Python code in a Jupyter Notebook that is used to run LJ simulations and fit a van der Waals gas model to data produced by the LJ fluid simulations. The second is a jigsaw activity, aimed at advanced undergraduate or graduate students, where students are assigned different sections of the LJ fluid simulation code, and must demonstrate the functionality of their section to the class by both giving an oral presentation and sharing a Jupyter Notebook demonstration of their own design.
Division of Chemical Education, Inc. and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A