NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1427541
Record Type: Journal
Publication Date: 2024
Pages: 15
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1364-5579
EISSN: EISSN-1464-5300
Computational vs. Qualitative: Analyzing Different Approaches in Identifying Networked Frames during the COVID-19 Crisis
Hossein Kermani; Alireza Bayat Makou; Amirali Tafreshi; Amir Mohamad Ghodsi; Ali Atashzar; Ali Nojoumi
International Journal of Social Research Methodology, v27 n4 p401-415 2024
Despite the increasing adaption of automated text analysis in communication studies, its strengths and weaknesses in framing analysis are so far unknown. Fewer efforts have been made to automatic detection of networked frames. Drawing on the recent developments in this field, we harness a comparative exploration, using Latent Dirichlet Allocation (LDA) and a human-driven qualitative coding process on three different samples. Samples were comprised of a dataset of 4,165,177 million tweets collected from Iranian Twittersphere during the Coronavirus crisis, from 21 January, 2020 to 29 April, 2020. Findings showed that while LDA is reliable in identifying the most prominent networked frames, it misses to detects less dominant frames. Our investigation also confirmed that LDA works better on larger datasets and lexical semantics. Finally, we argued that LDA could give us some primary intuitions, but qualitative interpretations are indispensable for understanding the deeper layers of meaning.
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Iran
Grant or Contract Numbers: N/A