ERIC Number: EJ1414261
Record Type: Journal
Publication Date: 2024
Pages: 22
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Towards Transparent and Trustworthy Prediction of Student Learning Achievement by Including Instructors as Co-Designers: A Case Study
Xiaojing Duan; Bo Pei; G. Alex Ambrose; Arnon Hershkovitz; Ying Cheng; Chaoli Wang
Education and Information Technologies, v29 n3 p3075-3096 2024
Providing educators with understandable, actionable, and trustworthy insights drawn from large-scope heterogeneous learning data is of paramount importance in achieving the full potential of artificial intelligence (AI) in educational settings. Explainable AI (XAI)--contrary to the traditional "black-box" approach--helps fulfilling this important goal. We present a case study of building prediction models for undergraduate students' learning achievement in a Computer Science course, where the development process involves the course instructor as a co-designer, and with the use of XAI technologies to explain the underlying reasoning of several machine learning predictions. The explanations enhance the transparency of the predictions and open the door for educators to share their judgments and insights. It further enables us to refine the predictions by incorporating the educators' contextual knowledge of the course and of the students. Through this human-AI collaboration process, we demonstrate how to achieve a more accountable understanding of students' learning and drive towards transparent and trustworthy student learning achievement prediction by keeping instructors in the loop. Our study highlights that trustworthy AI in education should emphasize not only the interpretability of the predicted outcomes and prediction process, but also the incorporation of subject-matter experts throughout the development of prediction models.
Descriptors: Academic Achievement, Artificial Intelligence, Prediction, Models, Undergraduate Students, Computer Science Education, Instructional Design, Technology Uses in Education
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF), Division of Information and Intelligent Systems (IIS)
Authoring Institution: N/A
Grant or Contract Numbers: 1955395