ERIC Number: EJ1402693
Record Type: Journal
Publication Date: 2023
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Investigating Behavior Patterns of Students during Online Self-Directed Learning through Process Mining
Education and Information Technologies, v28 n12 p15765-15787 2023
One of the recognized ways to enhance teaching and learning is having insights into the behavior patterns of students. Studies that explore behavior patterns in online self-directed learning (OSDL) are scant though. In addition, the focus is lacking on how high-achieving (HA) students' behavior patterns affect the academic performance of low-achieving (LA) students. To fill these research gaps, this study investigates (1) how the behavior patterns in OSDL vary between HA and LA students and (2) how HA students' behavior patterns affect LA students' academic performance. We used three perspectives of learning achievement, engagement, and cognitive load to examine academic performance. By utilizing process mining, we reviewed the log data of 71 college students on the Moodle platform and designed a pretest--posttest test without a control group. Results show obvious variances in the behavior patterns between HA and LA students. In particular, HA students performed more OSDL behaviors; their behavior patterns were more in line with self-directed logic. By contrast, LA students exhibited unmethodical behavior patterns; they were unable to process course content in depth. An instructional intervention was created with HA students' behavior patterns as basis. The engagement of LA students increased, and their cognitive load was reduced after the instructional intervention. However, their learning achievement did not increase substantially. The interview results were consistent with the quantitative data. These findings indicate that the behavior patterns of HA students can shed light on how to guide the OSDL of LA students. This study also provides fresh methodological perspectives for assessing OSDL.
Descriptors: Student Behavior, Behavior Patterns, Electronic Learning, Online Courses, Independent Study, High Achievement, Low Achievement, Academic Achievement, Learner Engagement, Cognitive Processes, Difficulty Level, College Students, Learning Management Systems, Intervention
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A