ERIC Number: EJ1392249
Record Type: Journal
Publication Date: 2023-Sep
Pages: 6
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1759-2879
EISSN: EISSN-1759-2887
Meta-Analyzing Partial Correlation Coefficients Using Fisher's Z Transformation
Research Synthesis Methods, v14 n5 p768-773 Sep 2023
The partial correlation coefficient (PCC) is used to quantify the linear relationship between two variables while taking into account/controlling for other variables. Researchers frequently synthesize PCCs in a meta-analysis, but two of the assumptions of the common equal-effect and random-effects meta-analysis model are by definition violated. First, the sampling variance of the PCC cannot assumed to be known, because the sampling variance is a function of the PCC. Second, the sampling distribution of each primary study's PCC is not normal since PCCs are bounded between -1 and 1. I advocate applying the Fisher's z transformation analogous to applying Fisher's z transformation for Pearson correlation coefficients, because the Fisher's z transformed PCC is independent of the sampling variance and its sampling distribution more closely follows a normal distribution. Reproducing a simulation study by Stanley and Doucouliagos and adding meta-analyses based on Fisher's z transformed PCCs shows that the meta-analysis based on Fisher's z transformed PCCs had lower bias and root mean square error than meta-analyzing PCCs. Hence, meta-analyzing Fisher's z transformed PCCs is a viable alternative to meta-analyzing PCCs, and I recommend to accompany any meta-analysis based on PCCs with one using Fisher's z transformed PCCs to assess the robustness of the results.
Descriptors: Correlation, Meta Analysis, Sampling, Simulation, Error of Measurement, Robustness (Statistics), Evaluation Methods
Wiley. Available from: John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030. Tel: 800-835-6770; e-mail: cs-journals@wiley.com; Web site: https://bibliotheek.ehb.be:2191/en-us
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Data File: URL: https://osf.io/ubqfg