ERIC Number: EJ1377814
Record Type: Journal
Publication Date: 2023
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1539-1523
EISSN: EISSN-1945-0818
Prompt Text Classifications with Transformer Models! An Exemplary Introduction to Prompt-Based Learning with Large Language Models
Journal of Research on Technology in Education, v55 n1 p125-141 2023
This study investigates the potential of automated classification using prompt-based learning approaches with transformer models (large language models trained in an unsupervised manner) for a domain-specific classification task. Prompt-based learning with zero or few shots has the potential to (1) make use of artificial intelligence without sophisticated programming skills and (2) make use of artificial intelligence without fine-tuning models with large amounts of labeled training data. We apply this novel method to perform an experiment using so-called zero-shot classification as a baseline model and a few-shot approach for classification. For comparison, we also fine-tune a language model on the given classification task and conducted a second independent human rating to compare it with the given human ratings from the original study. The used dataset consists of 2,088 email responses to a domain-specific problem-solving task that were manually labeled for their professional communication style. With the novel prompt-based learning approach, we achieved a Cohen's kappa of 0.40, while the fine-tuning approach yields a kappa of 0.59, and the new human rating achieved a kappa of 0.58 with the original human ratings. However, the classifications from the machine learning models have the advantage that each prediction is provided with a reliability estimate allowing us to identify responses that are difficult to score. We, therefore, argue that response ratings should be based on a reciprocal workflow of machine raters and human raters, where the machine rates easy-to-classify responses and the human raters focus and agree on the responses that are difficult to classify. Further, we believe that this new, more intuitive, prompt-based learning approach will enable more people to use artificial intelligence.
Descriptors: Prompting, Classification, Artificial Intelligence, Natural Language Processing, Prediction, Language Usage, Electronic Mail, Coding, Algorithms, Technology Uses in Education, Reliability, Evaluation Methods
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A