NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1376267
Record Type: Journal
Publication Date: 2023-Jun
Pages: 25
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0013-1954
EISSN: EISSN-1573-0816
Embodied Instrumentation in a Dynamic Geometry Environment: Eleven-Year-Old Students' Dragging Schemes
Pittalis, Marios; Drijvers, Paul
Educational Studies in Mathematics, v113 n2 p181-205 Jun 2023
Digital technologies for mathematics education are continuously developing. Still, much remains unknown about how students use these tools and how this affects learning. For example, tablets nowadays come with multi-touch options that allow for a more embodied approach to geometry education, compared to mouse interactions. However, little is known about how students use these opportunities to develop bodily-based conceptualizations of geometric concepts in a touch-based dynamic geometry environment (DGE). The aim of this study was to investigate students' dragging schemes from an embodied instrumentation perspective and to identify the types of embodied-dragging schemes that the students use, while transforming one type of parallelogram into another. Fifty-seven 11-year-old students worked on a task on transforming a given parallelogram into a rectangle and next into a square, using a tablet-enabled DGE. Results showed that students used three types of embodied dragging schemes: (a) action-perception dragging guided by perceived prototypical images of shapes, (b) sequentially-coordinated dragging based on initial perception and then utilizing the affordances of the artefacts, and (c) adaptive dragging, effectively integrating action-perception loops and geometrical properties. In schemes of types (b) and (c), geometric properties of the constructed shapes emerged and guided students' action-perception loops. As a conclusion, this description informs teachers, textbook authors, and designers of digital assessment on how to design student activities. From a theoretical perspective, the embodied instrumentation lens provided a fruitful approach to study student-tool interactions in geometry that does justice to the bodily foundations of mathematical cognition.
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A