NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1373877
Record Type: Journal
Publication Date: 2023-Apr
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-1756-1108
Change in Students' Explanation of the Shape of Snowflakes after Collaborative Immersive Virtual Reality
Matovu, Henry; Won, Mihye; Treagust, David Franklin; Ungu, Dewi Ayu Kencana; Mocerino, Mauro; Tsai, Chin-Chung; Tasker, Roy
Chemistry Education Research and Practice, v24 n2 p509-525 Apr 2023
In recent years, chemistry educators are increasingly adopting immersive virtual reality (IVR) technology to help learners visualise molecular interactions. However, educational studies on IVR mostly investigated its usability and user perceptions leaving out its impact on improving conceptual understanding. If they evaluated students' knowledge gains, they tended to use information recall tests to assess knowledge gains. Employing interviews and diagram-drawing tasks, this study explored how students' conceptual understanding of the nature of hydrogen bonds and the shape of snowflakes changed through a collaborative IVR experience on snowflakes. Participants were 68 undergraduate chemistry students. Videos of pre-/post-interviews and student-generated diagrams were analysed. The results indicated a marked improvement in students' conceptual understanding of the nature of hydrogen bonds among water molecules in snowflakes. After IVR, 57 students provided scientifically acceptable explanations of the nature of hydrogen bonds. Improvements in students' understanding were related to the intermolecular nature of hydrogen bonds, the role of lone pairs of electrons in forming hydrogen bonds, and molecular interactions in 3D space. This study suggests that collaborative IVR could be a powerful way for students to visualise molecular interactions, examine their alternative conceptions, and build more coherent understanding. Implications for the design and implementation of IVR activities for science learning are discussed.
Royal Society of Chemistry. Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK. Tel: +44-1223 420066; Fax: +44-1223 423623; e-mail: cerp@rsc.org; Web site: http://www.rsc.org/cerp
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Australia
Grant or Contract Numbers: N/A