NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1365536
Record Type: Journal
Publication Date: 2023-Mar
Pages: 28
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0735-6331
EISSN: EISSN-1541-4140
Pass/Fail Prediction in Programming Courses
Van Petegem, Charlotte; Deconinck, Louise; Mourisse, Dieter; Maertens, Rien; Strijbol, Niko; Dhoedt, Bart; De Wever, Bram; Dawyndt, Peter; Mesuere, Bart
Journal of Educational Computing Research, v61 n1 p68-95 Mar 2023
We present a privacy-friendly early-detection framework to identify students at risk of failing in introductory programming courses at university. The framework was validated for two different courses with annual editions taken by higher education students (N = 2 080) and was found to be highly accurate and robust against variation in course structures, teaching and learning styles, programming exercises and classification algorithms. By using interpretable machine learning techniques, the framework also provides insight into what aspects of practising programming skills promote or inhibit learning or have no or minor effect on the learning process. Findings showed that the framework was capable of predicting students' future success already early on in the semester.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://bibliotheek.ehb.be:2993
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A