NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1361691
Record Type: Journal
Publication Date: 2023
Pages: 12
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1935-9772
EISSN: EISSN-1935-9780
Effect of Binocular Disparity on Learning Anatomy with Stereoscopic Augmented Reality Visualization: A Double Center Randomized Controlled Trial
Bogomolova, Katerina; Vorstenbosch, Marc A. T. M.; El Messaoudi, Inssaf; Holla, Micha; Hovius, Steven E. R.; van der Hage, Jos A.; Hierck, Beerend P.
Anatomical Sciences Education, v16 n1 p87-98 Jan-Feb 2023
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities. In a double-center randomized controlled trial, first-year (bio)medical undergraduates studied lower extremity anatomy in an interactive 3D AR environment either with a stereoscopic 3D view (n = 32) or monoscopic 3D view (n = 34). Visual-spatial abilities were tested with a mental rotation test. Anatomical knowledge was assessed by a validated 30-item written test and 30-item specimen test. Cognitive load was measured by the NASA-TLX questionnaire. Students in the stereoscopic 3D and monoscopic 3D groups performed equally well in terms of percentage correct answers (written test: 47.9 ± 15.8 vs. 49.1 ± 18.3; P = 0.635; specimen test: 43.0 ± 17.9 vs. 46.3 ± 15.1; P = 0.429), and perceived cognitive load scores (6.2 ± 1.0 vs. 6.2 ± 1.3; P = 0.992). Regardless of intervention, visual-spatial abilities were positively associated with the specimen test scores ([eta squared] = 0.13, P = 0.003), perceived representativeness of the anatomy test questions (P = 0.010) and subjective improvement in anatomy knowledge (P < 0.001). In conclusion, binocular disparity does not improve learning anatomy. Motion parallax should be considered as another important depth cue that contributes to depth perception during learning in a stereoscopic 3D AR environment.
Wiley. Available from: John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030. Tel: 800-835-6770; e-mail: cs-journals@wiley.com; Web site: https://bibliotheek.ehb.be:2191/en-us
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A