ERIC Number: EJ1352861
Record Type: Journal
Publication Date: 2022-Sep
Pages: 56
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Automatic Content Analysis of Asynchronous Discussion Forum Transcripts: A Systematic Literature Review
Ahmad, Mubarik; Junus, Kasiyah; Santoso, Harry Budi
Education and Information Technologies, v27 n8 p11355-11410 Sep 2022
In recent years, the use of asynchronous discussion forums in online learning has increased rapidly. In earlier studies, content analysis is the most-used research method in exploring the discussion transcripts. However, conventional content analysis is a time-consuming task and requires experienced coders. There is a need for an automated approach to analyse the online discussion transcripts to help instructors optimise the learners' learning experiences. This article presents a systematic literature review of the automated content analysis approach in online discussion transcripts. Fifty-four relevant peer-reviewed conference and journal papers were found between January 2016 and October 2021, using the PRISMA and snowball methods. Eight measurement dimensions were studied from online learning transcripts: cognitive, social, relevance/importance, summary, pattern, behaviour, topic, and learning resources. Six theoretical frameworks were used in the selected studies, namely the Community of Inquiry, Stump's Post Classification, Arguello's Speech Acts, ICAP, Wise's Speaking Behaviour, and Bloom's Taxonomy. All selected studies are experimental, with 93% using machine learning to analyse discussion transcripts. English is the most-used language dataset, used in 78% of studies. These studies reported promising results in accuracy and precision. However, this research area still has room for improvement, especially in the reliability and generalisability of cross-domain context.
Descriptors: Asynchronous Communication, Computer Mediated Communication, Content Analysis, Automation, Electronic Learning, Transcripts (Written Records), Classification, Communities of Practice, Taxonomy, Speech Acts
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Information Analyses
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A