ERIC Number: EJ1307763
Record Type: Journal
Publication Date: 2021-Jun
Pages: 30
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1946-6226
EISSN: N/A
Exploration of Intersectionality and Computer Science Demographics: Understanding the Historical Context of Shifts in Participation
Lunn, Stephanie; Zahedi, Leila; Ross, Monique; Ohland, Matthew W.
ACM Transactions on Computing Education, v21 n2 Article 10 Jun 2021
Although computing occupations have some of the greatest projected growth rates, there remains a deficit of graduates in these fields. The struggle to engage enough students to meet demands is particularly pronounced for groups already underrepresented in computing, specifically, individuals that self-identify as a woman, or as Black, Hispanic/Latinx, or Native American. Prior studies have begun to examine issues surrounding engagement and retention, but more understanding is needed to close the gap, and to broaden participation. In this research, we provide quantitative evidence from the Multiple-Institution Database for Investigating Engineering Longitudinal Development--a longitudinal, multi-institutional database to describe participation trends of marginalized groups in computer science. Using descriptive statistics, we present the enrollment and graduation rates for those situated at the intersection of race/ethnicity and gender between 1987 and 2018. In this work, we observed periods of significant flux for Black men and women, and White women in particular, and consistently low participation of Hispanic/Latinx and Native American men and women, and Asian women. To provide framing for the evident peaks and valleys in participation, we applied historical context analysis to describe the political, economic, and social factors and events that may have impacted each group. These results put a spotlight on populations largely overlooked in statistical work and have the potential to inform educators, administrators, and researchers about how enrollments and graduation rates have changed over time in computing fields. In addition, they offer insight into potential causes for the vicissitudes, to encourage more equal access for all students going forward.
Descriptors: Computer Science, Disproportionate Representation, Minority Groups, Enrollment Rate, Graduation Rate, Computer Science Education, Economic Factors, Social Influences, Race, Ethnicity, Sex, Context Effect
Association for Computing Machinery. 2 Penn Plaza Suite 701, New York, NY 10121. Tel: 800-342-6626; Tel: 212-626-0500; Fax: 212-944-1318; e-mail: acmhelp@acm.org; Web site: http://toce.acm.org/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A