ERIC Number: EJ1182204
Record Type: Journal
Publication Date: 2018-Jun
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: N/A
Integrating Primary Research into the Teaching Lab: Benefits and Impacts of a One-Semester CURE for Physical Chemistry
Journal of Chemical Education, v95 n6 p928-938 Jun 2018
Many chemistry laboratory exercises follow a given protocol with known results. Such traditional laboratories rarely give students an accurate representation of how research is conducted, the scientific practices involved in research, and the ownership that accompanies developing and carrying out an independent project. Several laboratory reforms have sought to overcome these limitations, including the creation of course-based undergraduate research experiences (CUREs). The CURE design is meant to emulate authentic research in the teaching laboratory by having students perform novel experiments with unknown results. In this article, we describe our implementation of a CURE for an upper-level physical chemistry laboratory course. Our students carried out novel research using molecular dynamics simulations, isothermal titration calorimetry, and stopped-flow kinetics to study ligand binding to the protein human serum albumin. We studied the effects of the CURE laboratory redesign via a mixed-methods approach. We use the CURE Survey by Lopatto and colleagues to record students' perceived gains in course elements and benefits. We also conducted student interviews to gain an in-depth view of their experience with the CURE laboratory. Our findings suggest that implementing a CURE in an upper-level chemistry laboratory results in similar outcomes to other CURE experiences (which most often occur at the introductory level), can standardize undergraduate research training, and can increase student ownership of laboratory work. We conclude that developing CURE courses for upper-level chemistry courses is an effective way of enhancing undergraduate laboratory training and increasing student experience with research.
Descriptors: Chemistry, Science Instruction, Science Laboratories, College Science, Scientific Research, Simulation, Mixed Methods Research, Student Surveys, Student Attitudes, Scientific Concepts, Concept Formation, Interviews, Program Effectiveness, Undergraduate Students
Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Identifiers - Location: Georgia (Atlanta)
Grant or Contract Numbers: CHE0342877