ERIC Number: EJ1126596
Record Type: Journal
Publication Date: 2017-Mar
Pages: 28
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1560-4292
EISSN: N/A
Data-Driven Hint Generation in Vast Solution Spaces: A Self-Improving Python Programming Tutor
Rivers, Kelly; Koedinger, Kenneth R.
International Journal of Artificial Intelligence in Education, v27 n1 p37-64 Mar 2017
To provide personalized help to students who are working on code-writing problems, we introduce a data-driven tutoring system, ITAP (Intelligent Teaching Assistant for Programming). ITAP uses state abstraction, path construction, and state reification to automatically generate personalized hints for students, even when given states that have not occurred in the data before. We provide a detailed description of the system's implementation and perform a technical evaluation on a small set of data to determine the effectiveness of the component algorithms and ITAP's potential for self-improvement. The results show that ITAP is capable of producing hints for almost any given state after being given only a single reference solution, and that it can improve its performance by collecting data over time.
Descriptors: Programming, Coding, Computers, Data, Decision Making, Intelligent Tutoring Systems, Programmed Tutoring
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://bibliotheek.ehb.be:2189
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A