NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1013021
Record Type: Journal
Publication Date: 2013-Mar
Pages: 7
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: N/A
Development of the Glass Electrode and the pH Response
Graham, Daniel J.; Jaselskis, Bruno; Moore, Carl E.
Journal of Chemical Education, v90 n3 p345-351 Mar 2013
The glass electrode is the most commonly used device to access the pH of an aqueous solution. It attains highly accurate measurements via simple and well-established procedures. However, the reasons why the glass electrode potential scales with hydrogen ion concentration according to almost Nernstian potential values have been long-standing challenges to explain. Only in the past 50 years has an understanding of the glass electrode response to pH been achieved, as elucidated by Nikolsky and Baucke and other researchers. In essence, the potential of a glass electrode derives from a solid-liquid electrolyte ionic process that entails both hydrated glass surface groups and diverse ions in solution. Thus, a process that is deceptively complicated--and usually overlooked--underpins a boundary potential difference. This notwithstanding, other interpretations of the glass electrode response have been contributed. Most notably, Cheng has viewed the device as an electrical circuit condenser responding to adsorbed hydrogen or hydroxyl ions. In addition, Morrison has attributed the glass electrode response to a double layer surface-liquid interface potential. The purpose of this article is to portray an unusual mix of complexity and viewpoint disparity over the years. Knowledge and appreciation of this mix offer a more complete picture for students and educators of aqueous solution chemistry. This information is most appropriate to lecture and laboratory courses on quantitative analysis.
Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A