NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: ED649714
Record Type: Non-Journal
Publication Date: 2023-Aug-13
Pages: 35
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Modeling Hierarchical Attribute Structures in Diagnostic Classification Models with Multiple Attempts
Tae Yeon Kwon; A. Corinne Huggins-Manley; Jonathan Templin; Mingying Zheng
Grantee Submission
In classroom assessments, examinees can often answer test items multiple times, resulting in sequential multiple-attempt data. Sequential diagnostic classification models (DCMs) have been developed for such data. As student learning processes may be aligned with a hierarchy of measured traits, this study aimed to develop a sequential hierarchical DCM (sequential HDCM), which combines a sequential DCM with the HDCM, and investigate classification accuracy of the model in the presence of hierarchies when multiple attempts are allowed in dynamic assessment. We investigated the model's impact on classification accuracy when hierarchical structures are correctly specified, misspecified, or over-specified. The results indicate that (1) a sequential HDCM accurately classified students as masters and non-masters when the data had a hierarchical structure; (2) a sequential HDCM produced similar or slightly higher classification accuracy than nonhierarchical sequential LCDM when the data had hierarchical structures; and (3) the misspecification of the hierarchical structure of the data resulted in lower classification accuracy when the misspecified model had fewer attribute profiles than the true model. We discuss limitations and make recommendations on using the proposed model in practice. This study provides practitioners with information about the possibilities for psychometric modeling of dynamic classroom assessment data. [This paper will be published in "Journal of Educational Measurement."]
Related Records: EJ1427273
Publication Type: Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305A190079