NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: ED624080
Record Type: Non-Journal
Publication Date: 2022
Pages: 8
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Investigating the Effect of Automated Feedback on Learning Behavior in MOOCs for Programming
Gabbay, Hagit; Cohen, Anat
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (15th, Durham, United Kingdom, Jul 24-27, 2022)
The challenge of learning programming in a MOOC is twofold: acquiring programming skills and learning online, independently. Automated testing and feedback systems, often offered in programming courses, may scaffold MOOC learners by providing immediate feedback and unlimited re-submissions of code assignments. However, research still lacks empirical evidence of their effect on learning behavior of MOOC learners, with diverse backgrounds and goals. Addressing this gap, we investigated the connections between the use of automated feedback system and learning behavior measures, relevant for MOOCs: engagement, persistence and performance. Further, two subjective measures of success are examined: sense of learning and intention fulfilment. In an experimental design, we analyzed data of active learners in a Python programming MOOC (N=4652), comparing an experimental group provided with automated feedback with a control group that did not. In examining the effect of automated feedback, prior knowledge of programming and Python was considered. Empirical evidence was found for the relation between automated feedback usage and a higher engagement and better performance, as well as higher attendance in "active watchers" and "high-performed completers" clusters, obtained by cluster analysis. Learners reports on their experience with the automated feedback system supported these findings. Regarding the subjective measures of success, however, no difference was found between groups. Our study and the offered future research may contribute to the considerations regarding the integration of automated feedback in MOOCs for programming. [For the full proceedings, see ED623995.]
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: https://educationaldatamining.org/conferences/
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A