NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED622974
Record Type: Non-Journal
Publication Date: 2021
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Modeling Consistency Using Engagement Patterns in Online Courses
Zhou, Jianing; Bhat, Suma
Grantee Submission, Paper presented at the International Learning Analytics and Knowledge Conference (11th, Irvine, CA, Apr 12-16, 2021)
Consistency of learning behaviors is known to play an important role in learners' engagement in a course and impact their learning outcomes. Despite significant advances in the area of learning analytics (LA) in measuring various self-regulated learning behaviors, using LA to measure consistency of online course engagement patterns remains largely unexplored. This study focuses on modeling consistency of learners in online courses to address this research gap. Toward this, we propose a novel unsupervised algorithm that combines sequence pattern mining and ideas from information retrieval with a clustering algorithm to first extract engagement patterns of learners, represent learners in a vector space of these patterns and finally group them into groups with similar consistency levels. Using clickstream data recorded in a popular learning management system over two offerings of a STEM course, we validate our proposed approach to detect learners that are inconsistent in their behaviors. We find that our method not only groups learners by consistency levels, but also provides reliable instructor support at an early stage in a course. [This paper was published in: "LAK21: 11th International Learning Analytics and Knowledge Conference (LAK21), April 12-16, 2021, Irvine, CA, USA." ACM, 2021, pp. 226-236.]
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305A180211