ERIC Number: ED615496
Record Type: Non-Journal
Publication Date: 2021
Pages: 12
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Automatically Classifying Student Help Requests: A Multi-Year Analysis
Gao, Zhikai; Lynch, Collin; Heckman, Sarah; Barnes, Tiffany
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (14th, Online, Jun 29-Jul 2, 2021)
As Computer Science has increased in popularity so too have class sizes and demands on faculty to provide support. It is therefore more important than ever for us to identify new ways to triage student questions, identify common problems, target students who need the most help, and better manage instructors' time. By analyzing interaction data from office hours we can identify common patterns, and help to guide future help-seeking. My Digital Hand (MDH) is an online ticketing system that allows students to post help requests, and for instructors to prioritize support and track common issues. In this research, we have collected and analyzed a corpus of student questions from across six semesters of a CS2 with a focus on object-oriented programming course [17]. As part of this work, we grouped the interactions into five categories, analyzed the distribution of help requests, balanced the categories by Synthetic Minority Oversampling Technique (SMOTE) , and trained an automatic classifier based upon LightGBM to automatically classify student requests. We found that over 69% of the questions were unclear or barely specified. We proved the stability of the model across semesters through leave one out cross-validation and the target model achieves an accuracy of 91.8%. Finally, we find that online office hours can provide more help for more students. [For the full proceedings, see ED615472.]
Descriptors: Automation, Classification, Help Seeking, Computer Science Education, Computer Uses in Education, College Students
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: https://educationaldatamining.org/conferences/
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: 1821475