ERIC Number: EJ1405380
Record Type: Journal
Publication Date: 2024
Pages: 17
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-1939-1382
Computational Learning Analytics to Estimate Location-Based Self-Regulation Process of Real-World Experiences
IEEE Transactions on Learning Technologies, v17 p445-461 2024
A learner can autonomously acquire knowledge by experiencing the world, without necessarily being explicitly taught. The contents and ways of this type of real-world learning are grounded on his/her surroundings and are self-determined by computing real-world information. However, conventional studies have not modeled, observed, or understood a learner's self-regulation mechanism of real-world learning. This study developed computational learning analytics to estimate how this mechanism works. Our analytics segmented a time series of real-world learning into units of a cognitively closed and semantically independent function by estimating the spatiotemporal clusters of a learner's concentrated stay behavior. We found that learners' intercluster moves functioned to determine whether they maintained or changed their contents and strategies of real-world learning. We also found that the spatiotemporal sizes of the estimated clusters were correlated with the activeness and diversity of strategy-based content examinations at each location. This study forms a basis for automatically estimating qualitative transitions of real-world learning and encouraging a learner to obtain a better understanding of the world.
Descriptors: Computation, Learning Analytics, Experiential Learning, Self Management, Behavior, Learning Strategies
Institute of Electrical and Electronics Engineers, Inc. 445 Hoes Lane, Piscataway, NJ 08854. Tel: 732-981-0060; Web site: http://bibliotheek.ehb.be:2578/xpl/RecentIssue.jsp?punumber=4620076
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A