ERIC Number: EJ1402690
Record Type: Journal
Publication Date: 2023
Pages: 14
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1360-2357
EISSN: EISSN-1573-7608
Available Date: N/A
Using an Explicit Query and a Topic Model for Scientific Article Recommendation
Smail, Boussaadi; Aliane, Hassina; Abdeldjalil, Ouahabi
Education and Information Technologies, v28 n12 p15657-15670 2023
The search for relevant scientific articles is a crucial step in any research project. However, the vast number of articles published and available online in digital databases (Google Scholar, Semantic Scholar, etc.) can make this task tedious and negatively impact a researcher's productivity. This article proposes a new method of recommending scientific articles that takes advantage of content-based filtering. The challenge is to target relevant information that meets a researcher's needs, regardless of their research domain. Our recommendation method is based on semantic exploration using latent factors. Our goal is to achieve an optimal topic model that will serve as the basis for the recommendation process. Our experiences confirm our performance expectations, showing relevance and objectivity in the results.
Descriptors: Scientific and Technical Information, Journal Articles, Online Searching, Databases, Artificial Intelligence, Semantics, Algorithms
Springer. Available from: Springer Nature. One New York Plaza, Suite 4600, New York, NY 10004. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-460-1700; e-mail: customerservice@springernature.com; Web site: https://bibliotheek.ehb.be:2123/
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A