ERIC Number: ED652008
Record Type: Non-Journal
Publication Date: 2024
Pages: 27
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Approximate Balancing Weights for Clustered Observational Study Designs
Eli Ben-Michael; Lindsay Page; Luke Keele
Grantee Submission
In a clustered observational study, a treatment is assigned to groups and all units within the group are exposed to the treatment. We develop a new method for statistical adjustment in clustered observational studies using approximate balancing weights, a generalization of inverse propensity score weights that solve a convex optimization problem to find a set of weights that directly minimize a measure of covariate imbalance, subject to an additional penalty on the variance of the weights. We tailor the approximate balancing weights optimization problem to the clustered observational study setting by deriving an upper bound on the mean square error and finding weights that minimize this upper bound, linking the level of covariate balance to a bound on the bias. We implement the procedure by specializing the bound to a random cluster-level effects model, leading to a variance penalty that incorporates the signal-to-noise ratio and penalizes the weight on individuals and the total weight on groups differently according to the the intra-class correlation. [This is the online first version of an article published "Statistics in Medicine."]
Publication Type: Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305D210014