ERIC Number: EJ1422935
Record Type: Journal
Publication Date: 2024
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2544-7831
Normrank Correlations for Testing Associations and for Use in Latent Variable Models
Daniel B. Wright
Open Education Studies, v6 n1 Article 20240003 2024
Pearson's correlation is widely used to test for an association between two variables and also forms the basis of several multivariate statistical procedures including many latent variable models. Spearman's [rho] is a popular alternative. These procedures are compared with ranking the data and then applying the inverse normal transformation, or for short the "normrank transformation." Using the normrank transformation was more powerful than Pearson's and Spearman's procedures when the distributions have less than normal kurtosis (platykurtic), when the distributions have greater than normal kurtosis (leptokurtic), and when the distribution is skewed. This is examined for testing if there is an association between two variables, identifying the number of factors in an exploratory factor analysis, identifying appropriate loadings in these analyses, and identifying relations among latent variables in structural equation models. R functions and their use are shown.
De Gruyter. Available from: Walter de Gruyter, Inc. 121 High Street, Third Floor, Boston, MA 02110. Tel: 857-284-7073; Fax: 857-284-7358; e-mail: service@degruyter.com; Web site: http://www.degruyter.com
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A