Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 26 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
Practitioners | 2 |
Researchers | 2 |
Teachers | 2 |
Students | 1 |
Location
Australia | 2 |
Canada | 1 |
Canada (Montreal) | 1 |
China | 1 |
China (Shanghai) | 1 |
Europe | 1 |
Germany | 1 |
Hong Kong | 1 |
Slovakia | 1 |
Sweden | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Astrid Berg; Magnus Hultén – Chemistry Education Research and Practice, 2024
The importance of introducing students to mechanistic reasoning (MR) early in their schooling is emphasised in research. The goal of this case study was to contribute with knowledge on how early primary students' (9-10 year-olds) MR in chemistry is expressed and developed in a classroom practice framed by model-based inquiry. The study focuses on…
Descriptors: Elementary School Students, Abstract Reasoning, Chemistry, Scientific Concepts
Lynn Santelmann – Teaching of Psychology, 2024
Introduction: Psycholinguistics presents a challenge to teaching and learning because of the many abstract models in the field. Language-related games provide a vehicle for students to ground and demonstrate their understanding of these models. Statement of the problem: Models in psycholinguistics are challenging to teach and learn because they…
Descriptors: Psycholinguistics, Games, Game Based Learning, Concept Formation
Henry Markovits; Valerie A. Thompson – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
Mental model (Johnson-Laird, 2001) and probabilistic theories (Oaksford & Chater, 2009) claim to provide distinct explanations of human reasoning. However, the dual strategy model of reasoning suggests that this distinction corresponds to different reasoning strategies, termed "counterexample" and "statistical,"…
Descriptors: Abstract Reasoning, Thinking Skills, Learning Strategies, Logical Thinking
Nguyen-Dang Minh Phuc; Huynh Tan Thanh Tam – International Journal for Technology in Mathematics Education, 2024
Mathematics education often grapples with the challenge of teaching abstract mathematical concepts, particularly those existing in 3D space. Visualizing, manipulating, and comprehending these abstract objects can be a formidable task for learners. While 3D printing technology has found applications in various fields, its utilization in mathematics…
Descriptors: High Schools, Technology Uses in Education, Computation, Measurement
Rho, Jihyun; Rau, Martina A.; Van Veen, Barry D. – International Educational Data Mining Society, 2022
Instruction in many STEM domains heavily relies on visual representations, such as graphs, figures, and diagrams. However, students who lack representational competencies do not benefit from these visual representations. Therefore, students must learn not only content knowledge but also representational competencies. Further, as learning…
Descriptors: Learning Processes, Models, Introductory Courses, Engineering Education
Barth-Cohen, Lauren A.; Braden, Sarah K.; Young, Tamara G.; Gailey, Sara – Physical Review Physics Education Research, 2021
Research in undergraduate physics and in K-12 science education has demonstrated challenges and successes in facilitating student engagement with reasoning practices associated with professional physicists. Here we focus on one important dimension of physics reasoning, using evidence to revise models. While this topic has been explored at the…
Descriptors: Middle School Students, Physics, Science Instruction, Thinking Skills
Michael Duane Hicks – ProQuest LLC, 2021
Analogical reasoning has played a significant role in the development of modern mathematical concepts. Although some perspectives in mathematics education have argued against the use of analogies and analogical reasoning in instructional contexts, some attempts have been made to leverage the pedagogical power of analogies. I assert that with a…
Descriptors: Algebra, Mathematics Instruction, Learning Activities, Abstract Reasoning
Lieber, Leonie; Graulich, Nicole – Chemistry Education Research and Practice, 2022
Building scientific arguments is a central ability for all scientists regardless of their specific domain. In organic chemistry, building arguments is a necessary skill to estimate reaction processes in consideration of the reactivities of reaction centres or the chemical and physical properties. Moreover, building arguments for multiple reaction…
Descriptors: Chemistry, Science Instruction, Organic Chemistry, Persuasive Discourse
Rodriguez, Jon-Marc G.; Towns, Marcy H. – Chemistry Education Research and Practice, 2021
In this work, we discuss the importance of underlying theoretical assumptions in research, focusing on the conclusions reached when analyzing data from a misconceptions constructivist (stable, unitary) perspective in contrast to a fine-grained constructivist (resources, knowledge-in-pieces) perspective. Both frameworks are rooted in the idea that…
Descriptors: Biochemistry, Science Instruction, Constructivism (Learning), Misconceptions
Flores, Margaret M.; Moore, Alexcia J.; Meyer, Jill M. – Psychology in the Schools, 2020
Elementary standards include multiplication of single-digit numbers and students advance to solve complex problems and demonstrate procedural fluency in algorithms. The ability to illustrate procedural fluency in algorithms is dependent on the development of understanding and reasoning in multiplication. Development of multiplicative reasoning…
Descriptors: Elementary School Students, Grade 4, Grade 5, Teaching Methods
Langbeheim, Elon; Ben-Eliyahu, Einat; Adadan, Emine; Akaygun, Sevil; Ramnarain, Umesh Dewnarain – Chemistry Education Research and Practice, 2022
Learning progressions (LPs) are novel models for the development of assessments in science education, that often use a scale to categorize students' levels of reasoning. Pictorial representations are important in chemistry teaching and learning, and also in LPs, but the differences between pictorial and verbal items in chemistry LPs is unclear. In…
Descriptors: Science Instruction, Learning Trajectories, Chemistry, Thinking Skills
King, Gretchen P.; Bergan-Roller, Heather; Galt, Nicholas; Helikar, Tomáš; Dauer, Joseph T. – International Journal of Science Education, 2019
Model-based instruction offers numerous benefits to students, including increased content knowledge and critical thinking. This study explored the differences in the knowledge outcomes and reasoning processes employed by undergraduate students in an introductory biology lab as they constructed, revised, and simulated a computational model of a…
Descriptors: Thinking Skills, Teaching Methods, Genetics, Biology
Malone, Kathy L. – Science Education, 2023
The use of scientific modeling has been shown to be highly effective in the learning of science content in multiple disciplines for non-English Learners (EL). However, the benefits of using this pedagogy with ELs have not been heavily explored. This article discusses the use of modeling-based evolution and population ecology pedagogical units in a…
Descriptors: Teaching Methods, Science Instruction, Inquiry, Biology
Develaki, Maria – Science & Education, 2017
Scientific reasoning is particularly pertinent to science education since it is closely related to the content and methodologies of science and contributes to scientific literacy. Much of the research in science education investigates the appropriate framework and teaching methods and tools needed to promote students' ability to reason and…
Descriptors: Computer Simulation, Epistemology, Educational Philosophy, Science Education
Noll, Jennifer; Kirin, Dana – Statistics Education Research Journal, 2017
Teaching introductory statistics using curricula focused on modeling and simulation is becoming increasingly common in introductory statistics courses and touted as a more beneficial approach for fostering students' statistical thinking. Yet, surprisingly little research has been conducted to study the impact of modeling and simulation curricula…
Descriptors: Statistics, Introductory Courses, Models, Teaching Methods