NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 81 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ibrahim Al-Odat – Journal of Microbiology & Biology Education, 2024
This article aims to simplify and facilitate the process of practical teaching of enzyme kinetics by utilizing minimal teaching laboratory requirements. Simultaneously, it ensures that students comprehend the enzyme kinetics experiment effectively. The focus is on teaching students how to estimate the maximum velocity (Vmax) and Michaelis constant…
Descriptors: Undergraduate Students, Biochemistry, Science Instruction, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Sumalatha Peddi; Jacob R. Franklin; C. Scott Hartley – Journal of Chemical Education, 2024
Chemical reactions that mimic the function of ATP hydrolysis in biochemistry are of current interest in nonequilibrium systems chemistry. The formation of transient bonds from these reactions can drive molecular machines or generate materials with time-dependent properties. While the behavior of these systems can be complicated, the underlying…
Descriptors: Organic Chemistry, Science Instruction, Biochemistry, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel A. Mak; Sebastian Dunn; David Coombes; Carlo R. Carere; Jane R. Allison; Volker Nock; André O. Hudson; Renwick C. J. Dobson – Biochemistry and Molecular Biology Education, 2024
Enzymes are nature's catalysts, mediating chemical processes in living systems. The study of enzyme function and mechanism includes defining the maximum catalytic rate and affinity for substrate/s (among other factors), referred to as enzyme kinetics. Enzyme kinetics is a staple of biochemistry curricula and other disciplines, from molecular and…
Descriptors: Biochemistry, Kinetics, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Aledo, Juan C. – Biochemistry and Molecular Biology Education, 2021
We are living in the Big Data era, and yet we may have serious troubles when dealing with a handful of kinetic data if we are not properly instructed. The aim of this paper, related to enzyme kinetics, is to illustrate how to determine the K[subscript m] and V[subscript max] of a michaelian enzyme avoiding the pitfalls in which we often fall. To…
Descriptors: Biochemistry, Science Instruction, Teaching Methods, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B. – Physics Education, 2018
The study of buoyancy becomes very interesting when we measure the apparent weight of the body and the liquid vessel weight. In this paper, we propose an experimental apparatus that measures both the forces mentioned before as a function of the depth that a cylinder is sunk into the water. It is done using two load cells connected to an Arduino.…
Descriptors: Kinetics, Science Experiments, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas S. Kuntzleman; Joshua B. Kenney – Journal of Chemical Education, 2023
A variety of methods have been used to analyze the kinetics of various processes related to the Diet Coke and Mentos experiment (also known as the soda geyser). However, none of these previous reports has undertaken a quantitative exploration of the dynamics of the creation and collapse of the soda geyser itself. We have therefore devised a method…
Descriptors: Educational Experiments, Demonstrations (Educational), Handheld Devices, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Schubert, Frederic E. – Journal of Chemical Education, 2019
The cannon boring experiment of Count Rumford, where eight kilograms of water were boiled by metal on metal friction, is investigated. Consideration of this dramatic demonstration can enrich classroom discussions of calorimetry, units of measure, elements, and thermodynamics. A section pertaining to use of the article in the classroom appears…
Descriptors: Chemistry, Physics, Science Instruction, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Coyle, Robert; Farrell, Garrett; McFadden, Kim; Warren, Patricia – Journal of Chemical Education, 2021
This practical is aimed at students who have been introduced to the tableting process, drug delivery systems, and dissolution. The student can design and manufacture a tablet investigating the effect of excipients and their role in tablet design and then generate a release profile of the tablet by using a dissolution apparatus, flow-through cell,…
Descriptors: Chemistry, Science Instruction, Teaching Methods, Drug Therapy
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Jesse A.; Jones, Gregory H.; Iski, Erin V. – Journal of Chemical Education, 2019
Although kinetics forms a foundational part of the chemical curriculum, laboratory experiences with the subject are often limited and lack relevance to the actual practice of chemistry. Presented is an inquiry-based lab focused on Michaelis-Menten kinetics, implemented in an upper-level, university physical chemistry laboratory. Student learning…
Descriptors: Inquiry, Science Instruction, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Ison, A.; Ison, E. A.; Perry, C. M. – Journal of Chemical Education, 2017
An effective way of teaching undergraduates a full complement of research skills is through a multiweek advanced laboratory experiment. Here we outline a comprehensive set of experiments adapted from current primary literature focusing on organic and inorganic synthesis, catalysis, reactivity, and reaction kinetics. The catalyst,…
Descriptors: Science Instruction, College Science, Undergraduate Study, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Falconer, John L.; Hendren, Neil – Chemical Engineering Education, 2021
A virtual catalytic reactor laboratory (VCRL) experiment, which can be used in most browsers, is described. Students select feed conditions and use the VCRL to take data for a gas-phase catalytic reaction and fit kinetic parameters to a Langmuir-Hinshelwood rate expression. The VCRL contains instructions, equipment descriptions, an animated…
Descriptors: Science Instruction, Computer Simulation, Laboratory Experiments, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Hamper, Bruce C.; Meisel, Joseph W. – Journal of Chemical Education, 2020
"Beer Brewing: Chemical and Biochemical Principles" is a 15 week laboratory and lecture course specifically designed for nonscience majors as an introduction to science literacy via structured laboratory experiments that encourage student engagement. It provides students with a foundation in chemical and biochemical principles using a…
Descriptors: Biochemistry, Lecture Method, Nonmajors, Scientific Literacy
Peer reviewed Peer reviewed
Direct linkDirect link
Kuntzleman, Thomas S.; Johnson, Ryan – Journal of Chemical Education, 2020
The so-called Diet Coke and Mentos experiment is initiated by dropping Mentos candies into a bottle of Diet Coke or other carbonated beverage. This causes the beverage to rapidly degas, causing foam to stream out of the bottle. Simple application of the gas laws leads to the straightforward prediction that ejection of greater foam volume is…
Descriptors: Chemistry, Food, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Witherow, D. Scott – Biochemistry and Molecular Biology Education, 2016
This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…
Descriptors: Biochemistry, Laboratory Training, Microbiology, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Çoban, A.; Erol, M. – Physics Education, 2019
This work reports a rudimentary approach to teach and measure the kinetic friction coefficient using a smartphone that can effectively be employed for teaching purposes. More specifically, the kinetic friction coefficient, which is rather difficult to teach and measure, between various surfaces was determined by two different approaches using the…
Descriptors: Kinetics, Physics, Motion, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6