NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Abdinejad, Maryam; Talaie, Borzu; Qorbani, Hossain S.; Dalili, Shadi – Journal of Science Education and Technology, 2021
Visualizing molecular conformations and complex compound structures and chemical transformations in 3D is one of the most difficult tasks for undergraduate chemistry students. Modern computational technologies have revolutionized every aspect of our lives, including education. As a result, many researchers and educators are working on enhancing…
Descriptors: Visualization, Molecular Structure, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Rebecca K. Y.; Ng, Bernard Y. N.; Chen, Daisy M. H. – Biochemistry and Molecular Biology Education, 2019
Students always encounter difficulties in studying biochemical pathways. They are especially weak in understanding the relationships between metabolic pathways and their integration because these pathways are always taught one-by-one in class. In the past, various online resources have been developed to facilitate students' understanding toward…
Descriptors: Metabolism, Science Instruction, Biochemistry, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Cole, Martin H.; Rosenthal, Deborah P.; Sanger, Michael J. – Chemistry Education Research and Practice, 2019
This paper describes two studies comparing students' explanations of an oxidation-reduction reaction after viewing the chemical demonstration and one of two different particulate-level computer animations. In the first study, the two animations differed primarily in the complexity of the visual images. Students viewing the more simplified…
Descriptors: Molecular Structure, Scientific Concepts, Chemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Di Vincenzo, Antonella; Floriano, Michele A. – Journal of Chemical Education, 2019
An application for visualizing the aggregation of structureless atoms is presented. The application allows us to demonstrate on a qualitative basis, as well as by quantitatively monitoring the aggregate surface/volume ratio, that the enhanced reactivity of nanoparticles can be connected with their large specific surface. It is suggested that,…
Descriptors: Chemistry, Science Instruction, Molecular Structure, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Florjanczyk, Ursula; Ng, Derek P.; Andreopoulos, Stavroula; Jenkinson, Jodie – Biochemistry and Molecular Biology Education, 2018
The mathematical models that describe enzyme kinetics are invaluable predictive tools in numerous scientific fields. However, the daunting mathematical language used to describe kinetic behavior can be confusing for life science students; they often struggle to conceptualize and relate the mathematical representations to the molecular phenomena…
Descriptors: Undergraduate Students, Science Instruction, College Science, Animation
Peer reviewed Peer reviewed
Direct linkDirect link
Faggioni, Thaís; Ferreira, Natiele Carla da Silva; Lopes, Renato Matos; Fidalgo-Neto, Antonio Augusto; Cotta-de-Almeida, Vinicius; Alves, Luiz Anastacio – Advances in Physiology Education, 2019
The use of computers as a pedagogical resource is currently on the rise. In the case of immunology, students present difficulties in visualizing molecular phenomena. Thus the use of animations and simulations available on the internet might facilitate the learning of complex immunological concepts. In this context, it is important to map and…
Descriptors: Physiology, Science Instruction, Computer Software, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Seibert, Johann; Kay, Christopher W. M.; Huwer, Johannes – Journal of Chemical Education, 2019
Given that students are constantly communicating and documenting special experiences in their social and private lives with digital devices, we suggest that this behavior could be used to record and deepen learning experiences-such as visualizing reactions at the molecular level-in a chemistry class. An example would be the creation of stop-motion…
Descriptors: Science Instruction, Chemistry, Science Experiments, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, K. Christopher; Villarreal, Savannah – Chemistry Education Research and Practice, 2015
In this reply to Elon Langbeheim's response to an article recently published in this journal, authors Smith and Villarreal identify several types of general chemistry students' misconceptions concerning the concept of particle position during physical change. They focus their response on one of the misconceptions identified as such: Given a solid…
Descriptors: Chemistry, Science Instruction, Scientific Concepts, Misconceptions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Malkoc, Ummuhan – Turkish Online Journal of Educational Technology - TOJET, 2017
Animations of molecular structure and dynamics are repeatedly applied to support student comprehension in the theoretical ideas of chemistry. However, students' understanding the dynamics of the phenomena is directly related to the understanding of teachers as instructors. Therefore, this study aimed to investigate how the features of three…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Gregorius, R. Ma. – Chemistry Education Research and Practice, 2017
Student performance in a flipped classroom with an animation-based content knowledge development system for the bottom third of the incoming first year college students was compared to that in a traditional lecture-based teaching method. 52% of these students withdrew from the traditionally taught General Chemistry course, compared to 22% in a…
Descriptors: Teaching Methods, Chemistry, Science Instruction, Animation
Peer reviewed Peer reviewed
Direct linkDirect link
Kin, Ng Hong; Ling, Tan Aik – Teaching Science, 2016
The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Barradas-Solas, Francisco; Gomez, Pedro J. Sanchez – Chemistry Education Research and Practice, 2014
Students' understanding of the orbital concept has been subject to considerable research and debate and often found at variance with a quantum mechanical ideal. Could it be the case that orbitals as actually used by practising chemists in teaching and research also differ from that ideal? Our experience shows that this might often be the case.…
Descriptors: Scientific Concepts, Instructional Material Evaluation, Molecular Structure, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Gottschalk, Elinor; Venkataraman, Bhawani – Journal of Chemical Education, 2014
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
Descriptors: Science Instruction, Chemistry, Animation, Interaction
Peer reviewed Peer reviewed
Direct linkDirect link
Kelly, Resa M.; Akaygun, Sevil – Journal of Chemical Education, 2016
This article summarizes an investigation into how Flash-based cartoon video tutorials featuring molecular visualizations affect students' mental models of acetic acid and hydrochloric acid solutions and how the acids respond when tested for electrical conductance. Variation theory served as the theoretical framework for examining how students…
Descriptors: Cartoons, Visualization, Animation, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Tasker, Roy – Teaching Science, 2014
Why is chemistry so difficult? A seminal paper by Johnstone (1982) offered an explanation for why science in general, and chemistry in particular, is so difficult to learn. He proposed that an expert in chemistry thinks at three levels; the macro (referred to as the observational level in this article), the sub-micro (referred to as the molecular…
Descriptors: Chemistry, Visualization, Molecular Structure, Theory Practice Relationship
Previous Page | Next Page »
Pages: 1  |  2