Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Cheating | 5 |
Statistical Analysis | 5 |
Identification | 4 |
Test Items | 3 |
Bayesian Statistics | 2 |
Hypothesis Testing | 2 |
Licensing Examinations… | 2 |
Reaction Time | 2 |
Scores | 2 |
Achievement Gains | 1 |
Deception | 1 |
More ▼ |
Source
Grantee Submission | 5 |
Publication Type
Reports - Research | 5 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip – Grantee Submission, 2021
Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson lemma (e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set of items. The statistic is a special case of the optimal appropriateness indices of Levine and Drasgow (1988) and is the most powerful statistic for detecting item…
Descriptors: Robustness (Statistics), Hypothesis Testing, Statistics, Test Items
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2019
According to Wollack and Schoenig (2018), score differencing is one of six types of statistical methods used to detect test fraud. In this paper, we suggested the use of Bayes factors (e.g., Kass & Raftery, 1995) for score differencing. A simulation study shows that the suggested approach performs slightly better than an existing frequentist…
Descriptors: Cheating, Deception, Statistical Analysis, Bayesian Statistics
Sinharay, Sandip – Grantee Submission, 2019
Benefiting from item preknowledge (e.g., McLeod, Lewis, & Thissen, 2003) is a major type of fraudulent behavior during educational assessments. This paper suggests a new statistic that can be used for detecting the examinees who may have benefitted from item preknowledge using their response times. The statistic quantifies the difference in…
Descriptors: Test Items, Cheating, Reaction Time, Identification
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2019
According to Wollack and Schoenig (2018), benefitting from item preknowledge is one of the three broad types of test fraud that occur in educational assessments. We use tools from constrained statistical inference to suggest a new statistic that is based on item scores and response times and can be used to detect the examinees who may have…
Descriptors: Scores, Test Items, Reaction Time, Cheating