Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 9 |
Descriptor
Cheating | 9 |
Statistical Analysis | 9 |
Identification | 7 |
Bayesian Statistics | 3 |
Test Items | 3 |
Achievement Gains | 2 |
Computer Assisted Testing | 2 |
Item Response Theory | 2 |
Probability | 2 |
Behavior Patterns | 1 |
Computation | 1 |
More ▼ |
Source
Educational and Psychological… | 2 |
Grantee Submission | 2 |
International Journal of… | 1 |
Journal of Applied Testing… | 1 |
Journal of Educational… | 1 |
Journal of Educational and… | 1 |
Research Papers in Education | 1 |
Author
Sinharay, Sandip | 4 |
Johnson, Matthew S. | 2 |
Becker, Kirk | 1 |
Black, Beth | 1 |
Dogan, Celal Deha | 1 |
Grochowalski, Joseph H. | 1 |
Harring, Jeffrey R. | 1 |
He, Qingping | 1 |
Hendrickson, Amy | 1 |
Man, Kaiwen | 1 |
Meadows, Michelle | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 5 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Elementary Education | 1 |
Grade 5 | 1 |
Intermediate Grades | 1 |
Middle Schools | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Grochowalski, Joseph H.; Hendrickson, Amy – Journal of Educational Measurement, 2023
Test takers wishing to gain an unfair advantage often share answers with other test takers, either sharing all answers (a full key) or some (a partial key). Detecting key sharing during a tight testing window requires an efficient, easily interpretable, and rich form of analysis that is descriptive and inferential. We introduce a detection method…
Descriptors: Identification, Cooperative Learning, Cheating, Statistical Analysis
Becker, Kirk; Meng, Huijuan – Journal of Applied Testing Technology, 2022
The rise of online proctoring potentially provides more opportunities for item harvesting and consequent brain dumping and shared "study guides" based on stolen content. This has increased the need for rapid approaches for evaluating and acting on suspicious test responses in every delivery modality. Both hiring proxy test takers and…
Descriptors: Identification, Cheating, Computer Assisted Testing, Observation
The Use of Theory of Linear Mixed-Effects Models to Detect Fraudulent Erasures at an Aggregate Level
Peng, Luyao; Sinharay, Sandip – Educational and Psychological Measurement, 2022
Wollack et al. (2015) suggested the erasure detection index (EDI) for detecting fraudulent erasures for individual examinees. Wollack and Eckerly (2017) and Sinharay (2018) extended the index of Wollack et al. (2015) to suggest three EDIs for detecting fraudulent erasures at the aggregate or group level. This article follows up on the research of…
Descriptors: Cheating, Identification, Statistical Analysis, Testing
Sinharay, Sandip; Johnson, Matthew S. – Journal of Educational and Behavioral Statistics, 2021
Score differencing is one of the six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Ucar, Arzu; Dogan, Celal Deha – International Journal of Assessment Tools in Education, 2021
Distance learning has become a popular phenomenon across the world during the COVID-19 pandemic. This led to answer copying behavior among individuals. The cut point of the Kullback-Leibler Divergence (KL) method, one of the copy detecting methods, was calculated using the Youden Index, Cost-Benefit, and Min Score p-value approaches. Using the cut…
Descriptors: Cheating, Identification, Cutting Scores, Statistical Analysis
Sinharay, Sandip; Johnson, Matthew S. – Grantee Submission, 2021
Score differencing is one of six categories of statistical methods used to detect test fraud (Wollack & Schoenig, 2018) and involves the testing of the null hypothesis that the performance of an examinee is similar over two item sets versus the alternative hypothesis that the performance is better on one of the item sets. We suggest, to…
Descriptors: Probability, Bayesian Statistics, Cheating, Statistical Analysis
Sinharay, Sandip – Grantee Submission, 2021
Drasgow, Levine, and Zickar (1996) suggested a statistic based on the Neyman-Pearson lemma (e.g., Lehmann & Romano, 2005, p. 60) for detecting preknowledge on a known set of items. The statistic is a special case of the optimal appropriateness indices of Levine and Drasgow (1988) and is the most powerful statistic for detecting item…
Descriptors: Robustness (Statistics), Hypothesis Testing, Statistics, Test Items
He, Qingping; Meadows, Michelle; Black, Beth – Research Papers in Education, 2022
A potential negative consequence of high-stakes testing is inappropriate test behaviour involving individuals and/or institutions. Inappropriate test behaviour and test collusion can result in aberrant response patterns and anomalous test scores and invalidate the intended interpretation and use of test results. A variety of statistical techniques…
Descriptors: Statistical Analysis, High Stakes Tests, Scores, Response Style (Tests)
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2021
Many approaches have been proposed to jointly analyze item responses and response times to understand behavioral differences between normally and aberrantly behaved test-takers. Biometric information, such as data from eye trackers, can be used to better identify these deviant testing behaviors in addition to more conventional data types. Given…
Descriptors: Cheating, Item Response Theory, Reaction Time, Eye Movements