NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Seibert, Johann; Kay, Christopher W. M.; Huwer, Johannes – Journal of Chemical Education, 2019
Given that students are constantly communicating and documenting special experiences in their social and private lives with digital devices, we suggest that this behavior could be used to record and deepen learning experiences-such as visualizing reactions at the molecular level-in a chemistry class. An example would be the creation of stop-motion…
Descriptors: Science Instruction, Chemistry, Science Experiments, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Amy Kamarainen; Shari Metcalf; Tina Grotzer; Craig Brimhall; Chris Dede – International Journal of Designs for Learning, 2016
We describe a mobile augmented reality (AR) experience called Atom Tracker designed to help middle school students better understand the cycling of matter in ecosystems with a focus on the concept of conservation of matter and the processes of photosynthesis and respiration. Location-based AR allows students to locate virtual "hotspots,"…
Descriptors: Middle School Students, Secondary School Science, Conservation (Concept), Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Kin, Ng Hong; Ling, Tan Aik – Teaching Science, 2016
The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Hsin-Yi; Quintana, Chris; Krajcik, Joseph S. – Science Education, 2010
In this study, we investigated whether the understanding of the particulate nature of matter by students was improved by allowing them to design and evaluate molecular animations of chemical phenomena. We developed Chemation, a learner-centered animation tool, to allow seventh-grade students to construct flipbook-like simple animations to show…
Descriptors: Animation, Peer Evaluation, Factor Analysis, Effect Size
Peer reviewed Peer reviewed
Moore, John W., Ed. – Journal of Chemical Education, 1987
Provides a series of short articles about various uses of computers and courseware in teaching chemistry. Addresses topics such as a programming utility for animation, an organic synthesis program, a program for the allocation of organic qualitative analysis of unknowns, color images of molecules, and enhancing spreadsheet capabilities. (TW)
Descriptors: Animation, Chemical Analysis, Chemistry, College Science