NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fazlul, Ishtiaque; Koedel, Cory; Parsons, Eric; Qian, Cheng – AERA Open, 2021
We evaluate the feasibility of estimating test-score growth for schools and districts with a gap year in test data. Our research design uses a simulated gap year in testing when a true test gap did not occur, which facilitates comparisons of district- and school-level growth estimates with and without a gap year. We find that growth estimates…
Descriptors: Scores, Achievement Gains, Computation, School Districts
Peer reviewed Peer reviewed
Direct linkDirect link
Wells, Craig S.; Sireci, Stephen G. – Applied Measurement in Education, 2020
Student growth percentiles (SGPs) are currently used by several states and school districts to provide information about individual students as well as to evaluate teachers, schools, and school districts. For SGPs to be defensible for these purposes, they should be reliable. In this study, we examine the amount of systematic and random error in…
Descriptors: Growth Models, Reliability, Scores, Error Patterns
Fazlul, Ishtiaque; Koedel, Cory; Parsons, Eric; Qian, Cheng – National Center for Analysis of Longitudinal Data in Education Research (CALDER), 2021
We evaluate the feasibility of estimating test-score growth with a gap year in testing data, informing the scenario when state testing resumes after the 2020 COVID-19-induced test stoppage. Our research design is to simulate a gap year in testing using pre-COVID-19 data--when a true test gap did not occur--which facilitates comparisons of…
Descriptors: Scores, Achievement Gains, Computation, Growth Models
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott; Cai, Li – Educational Measurement: Issues and Practice, 2015
Student growth percentiles (SGPs, Betebenner, 2009) are used to locate a student's current score in a conditional distribution based on the student's past scores. Currently, following Betebenner (2009), quantile regression (QR) is most often used operationally to estimate the SGPs. Alternatively, multidimensional item response theory (MIRT) may…
Descriptors: Item Response Theory, Reliability, Growth Models, Computation
Monroe, Scott; Cai, Li – Grantee Submission, 2015
Student Growth Percentiles (SGP, Betebenner, 2009) are used to locate a student's current score in a conditional distribution based on the student's past scores. Currently, following Betebenner (2009), quantile regression is most often used operationally to estimate the SGPs. Alternatively, multidimensional item response theory (MIRT) may also be…
Descriptors: Item Response Theory, Reliability, Growth Models, Computation
Schmitt, Lisa; Hutchins, Shaun – Online Submission, 2016
This report provides an overview of the process used to derive a school's growth level and summarizes 2015 math and reading/ELA growth levels for all AISD elementary, middle and high schools. Additionally, longitudinal data are provided for each school level.
Descriptors: School Districts, Academic Achievement, Elementary School Students, Middle School Students