NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Paul J. Emigh; Corinne A. Manogue – Physical Review Physics Education Research, 2024
Physics experts and students commonly use a variety of representations when working with partial derivatives, including symbols, graphs, and words. One especially powerful representation is the contour graph. In open-ended problem-solving interviews with nine upper-division physics students, we asked students to determine derivatives from contour…
Descriptors: Physics, Scientific Concepts, Concept Formation, Geometric Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Garimella, Umadevi; Sahin, Nesrin – Science Teacher, 2021
One way to develop a cross-curricular lesson is to select the most common mathematical formulas used in science and carefully develop and implement tasks that allow students to make connections between the mathematical representations and theoretical/physical science concepts. The slope-intercept formula, which is used to study relationships…
Descriptors: Science Instruction, Thermodynamics, Mathematical Formulas, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Paczesniak, Tomasz; Rydel-Ciszek, Katarzyna; Chmielarz, Pawel; Charczuk, Maria; Sobkowiak, Andrzej – Journal of Chemical Education, 2018
Spontaneity criteria for processes with useful (especially electrical) work have been discussed based on total differentials of thermodynamic functions. Reaction Gibbs energy ([Delta][subscript r]G) and electrochemical reaction Gibbs energy ([Delta][subscript r]G~) have been juxtaposed. Three-dimensional graphs showing the dependencies of…
Descriptors: Chemistry, Science Instruction, Energy, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Novak, Igor – Journal of Chemical Education, 2018
Chemical equilibrium is one of the most important concepts in chemistry. The changes in properties of the chemical system at equilibrium induced by variations in pressure, volume, temperature, and concentration are always included in classroom teaching and discussions. This work introduces a novel, geometrical approach to understanding the…
Descriptors: Science Instruction, Scientific Concepts, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
DePierro, Ed; Garafalo, Fred; Gordon, Patrick – Journal of Chemical Education, 2018
Science students need exposure to activities that will help them to become familiar with phenomena exhibiting exponential decay. This paper describes an experiment that allows students to determine the rate of thermal energy loss by a hot object to its surroundings. It requires limited equipment, is safe, and gives reasonable results. Students…
Descriptors: Energy Conservation, Energy Management, Thermodynamics, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Kiatgamolchai, Somchai – Physics Teacher, 2015
It is well known that heat transfer between two objects results in a positive change in the total entropy of the two-object system. The second law of thermodynamics states that the entropy change of a naturally irreversible process is positive. In other words, if the entropy change of any process is positive, it can be inferred that such a process…
Descriptors: Heat, Thermodynamics, Science Instruction, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Perez-Benito, Joaquin F. – Journal of Chemical Education, 2017
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
Descriptors: Chemistry, Kinetics, Scientific Concepts, Graduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Borge, Javier – Journal of Chemical Education, 2015
G, G°, [delta][subscript r]G, [delta][subscript r]G°, [delta]G, and [delta]G° are essential quantities to master the chemical equilibrium. Although the number of publications devoted to explaining these items is extremely high, it seems that they do not produce the desired effect because some articles and textbooks are still being written with…
Descriptors: Chemistry, Energy, Scientific Concepts, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Dake; Khan, Haris – Physics Education, 2013
This paper presents a comparative study of the thermal efficiencies of mechanical heat engines by using a graphical approach based on the pressure-volume ("P-V") diagram. Three types of idealized thermodynamic cycles--the Otto, the Diesel and the Brayton--are compared in pairs. Given the same temperature range within which the engines…
Descriptors: Thermodynamics, Scientific Principles, Engines, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bindel, Thomas H. – Journal of Chemical Education, 2010
Entropy analyses as a function of the extent of reaction are presented for a number of physicochemical processes, including vaporization of a liquid, dimerization of nitrogen dioxide, and the autoionization of water. Graphs of the total entropy change versus the extent of reaction give a visual representation of chemical equilibrium and the second…
Descriptors: Chemistry, Scientific Concepts, Data Analysis, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A. – Journal of Chemical Education, 2006
The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…
Descriptors: Learning Activities, Kinetics, Inorganic Chemistry, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Perrin, Michele – Journal of STEM Education: Innovations and Research, 2004
This paper uses inquiry-based learning to introduce primary students to the concepts and terminology found in four introductory engineering courses: Differential Equations, Circuit Analysis, Thermodynamics, and Dynamics. Simple electronic sensors coupled with everyday objects, such as a troll doll, demonstrate and reinforce the physical principles…
Descriptors: Inquiry, Active Learning, Engineering Education, Elementary Education