NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 113 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jonathan R. Thurston; Michael P. Marshak; David Reber – Journal of Chemical Education, 2022
Highlighting the interdisciplinary nature of research, we present a series of experiments for undergraduate lab courses that teach the principles of preparative ion exchange chromatography and flame emission spectroscopy. Through these inquiry-based experiments, the students learn about experimental design and instrument limitations, naturally…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Laboratory Experiments
Deon T. Miles – Journal of Chemical Education, 2023
Students in a typical instrumental analysis course may learn more than 30 analytical techniques. There are more than 150 components associated with the instrumentation that they learn. To help students organize this large amount of information, we classified these components into four categories: sources, samples, discriminators, and detectors. In…
Descriptors: Pictorial Stimuli, Science Instruction, Teaching Methods, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cresswell, Sarah L.; Loughlin, Wendy A.; Coster, Mark J.; Green, David M. – Journal of Chemical Education, 2019
Success in undergraduate chemical experiments requires students to develop knowledge and skills of instrumentation, equipment, and chemical techniques. In this technology report, we propose an adaptable and user-focused strategy to improve students' foundational skill and proficiency with chemical laboratory techniques and instrumentation. The…
Descriptors: Interactive Video, Chemistry, Science Instruction, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang – Journal of Science Education and Technology, 2016
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…
Descriptors: Science Instruction, Physics, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C. – Journal of Chemical Education, 2015
For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…
Descriptors: Chemistry, Statistical Analysis, Metallurgy, Hazardous Materials
Peer reviewed Peer reviewed
Direct linkDirect link
Mott, Jenna R.; Munson, Paul J.; Kreuter, Rodney A.; Chohan, Balwant S.; Sykes, Danny G. – Journal of Chemical Education, 2014
The teaching of instrumental analysis for many small colleges and high schools continues to be stymied by high-cost, complicated maintenance, high power requirements, and often the sheer bulk of the instrumentation. Such issues have led us to develop inexpensive instruments as part of a SMILE initiative (small, mobile instruments for laboratory…
Descriptors: Measurement Equipment, Chemistry, Electronics, Instrumentation
Peer reviewed Peer reviewed
Direct linkDirect link
Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza – Journal of Chemical Education, 2013
Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…
Descriptors: College Science, Spectroscopy, Science Instruction, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Adelhelm, Manfred; Aristov, Natasha; Habekost, Achim – Journal of Chemical Education, 2010
The physical properties of oxygen, in particular, the blue color of the liquid phase, the red glow of its chemiluminescence, and its paramagnetism as shown by the entrapment or deflection of liquid oxygen by a magnetic field, can be investigated in a regular school setting with hand-held spectrophotometers and digital cameras. In college-level…
Descriptors: Chemistry, Science Instruction, Instrumentation, Demonstrations (Educational)
Clark, Lynn; Majumdar, Saswati; Bhattacharjee, Joydeep; Hanks, Anne Case – Journal of Geoscience Education, 2015
This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations…
Descriptors: STEM Education, Rural Education, Teacher Education, Professional Development
Peer reviewed Peer reviewed
Direct linkDirect link
Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R. – Journal of College Science Teaching, 2011
Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…
Descriptors: Undergraduate Students, Student Attitudes, Spectroscopy, Scientific Concepts
Sherman, Kristin Mary Daniels – ProQuest LLC, 2010
The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…
Descriptors: Video Technology, Majors (Students), Chemistry, Laboratory Manuals
Peer reviewed Peer reviewed
Direct linkDirect link
Nonclercq, A.; Biest, A. V.; De Cuyper, K.; Leroy, E.; Martinez, D. L.; Robert, F. – IEEE Transactions on Education, 2010
As part of an instrumentation course, a problem-based learning framework was selected for laboratory instruction. Two acquisition chains were designed to help students carry out realistic instrumentation problems. The first tool is a virtual (simulated) modular acquisition chain that allows rapid overall understanding of the main problems in…
Descriptors: Foreign Countries, Instrumentation, Laboratories, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Henderson, David E. – Journal of Chemical Education, 2010
A simulation game is used to teach students in instrumental analysis courses to find the latest developments in the field, use the journal literature, and apply critical thinking to determine the relative importance of the work they find. They also learn about the business of chemical instruments and to make oral presentations. The competitive…
Descriptors: Critical Thinking, Information Literacy, Chemistry, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I. – European Journal of Physics, 2009
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…
Descriptors: Mathematical Models, Educational Technology, Calculus, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Wahab, M. Farooq – Journal of Chemical Education, 2007
The construction of a fluorometer and a spectrofluorometer using flashlight or a sunlight excitation source in a shoebox and the eye as a detector is being described. The assembly helps in understanding several fundamental ideas related to the subject very easily.
Descriptors: Instrumentation, Spectroscopy, Science Instruction, Science Experiments
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8