NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Austin, Peter C. – Multivariate Behavioral Research, 2011
The propensity score is the probability of treatment assignment conditional on observed baseline characteristics. The propensity score allows one to design and analyze an observational (nonrandomized) study so that it mimics some of the particular characteristics of a randomized controlled trial. In particular, the propensity score is a balancing…
Descriptors: Probability, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Imai, Kosuke; Jo, Booil; Stuart, Elizabeth A. – Multivariate Behavioral Research, 2011
In this commentary, we demonstrate how the potential outcomes framework can help understand the key identification assumptions underlying causal mediation analysis. We show that this framework can lead to the development of alternative research design and statistical analysis strategies applicable to the longitudinal data settings considered by…
Descriptors: Research Design, Statistical Analysis, Research Methodology, Longitudinal Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Pituch, Keenan A.; Stapleton, Laura M. – Multivariate Behavioral Research, 2008
A Monte Carlo study compared the statistical performance of standard and robust multilevel mediation analysis methods to test indirect effects for a cluster randomized experimental design under various departures from normality. The performance of these methods was examined for an upper-level mediation process, where the indirect effect is a fixed…
Descriptors: Research Design, Monte Carlo Methods, Statistical Analysis, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi – Multivariate Behavioral Research, 2009
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…
Descriptors: Statistical Bias, Reliability, Data Analysis, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Overall, John E.; Tonidandel, Scott – Multivariate Behavioral Research, 2010
A previous Monte Carlo study examined the relative powers of several simple and more complex procedures for testing the significance of difference in mean rates of change in a controlled, longitudinal, treatment evaluation study. Results revealed that the relative powers depended on the correlation structure of the simulated repeated measurements.…
Descriptors: Monte Carlo Methods, Statistical Significance, Correlation, Depression (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Markus, Keith A. – Multivariate Behavioral Research, 2008
One can distinguish statistical models used in causal modeling from the causal interpretations that align them with substantive hypotheses. Causal modeling typically assumes an efficient causal interpretation of the statistical model. Causal modeling can also make use of mereological causal interpretations in which the state of the parts…
Descriptors: Research Design, Structural Equation Models, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J.; Sterba, Sonya K.; Hallfors, Denise Dion – Multivariate Behavioral Research, 2008
Individually randomized treatments are often administered within a group setting. As a consequence, outcomes for treated individuals may be correlated due to provider effects, common experiences within the group, and/or informal processes of socialization. In contrast, it is often reasonable to regard outcomes for control participants as…
Descriptors: Youth Programs, High Risk Students, Behavior Disorders, Outcomes of Treatment
Peer reviewed Peer reviewed
Cliff, Norman – Multivariate Behavioral Research, 1996
It is argued that ordinal statistical methods are often more appropriate than their more common counterparts because conclusions will be unaffected by monotonic transformation of the variables; they are more statistically robust when used appropriately; and they often correspond more closely to the researcher's goals. (SLD)
Descriptors: Correlation, Research Design, Statistical Analysis, Transformations (Mathematics)
Peer reviewed Peer reviewed
Skrondal, Anders – Multivariate Behavioral Research, 2000
Discusses the design and analysis of Monte Carlo experiments, with special reference to structural equation modeling. Outlines three fundamental challenges of Monte Carlo approaches and suggests some alternative procedures that challenge conventional wisdom. Asserts that comprehensive Monte Carlo studies can be done with a personal computer if the…
Descriptors: Monte Carlo Methods, Research Design, Research Methodology, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Pituch, Keenan A.; Whittaker, Tiffany A.; Stapleton, Laura M. – Multivariate Behavioral Research, 2005
A Monte Carlo study extended the research of MacKinnon, Lockwood, Hoffman, West, and Sheets (2002) for single-level designs by examining the statistical performance of four methods to test for mediation in a multilevel experimental design. The design studied was a two-group experiment that was replicated across several sites, included a single…
Descriptors: Research Design, Intervals, Monte Carlo Methods, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Pituch, Keenan A.; Stapleton, Laura M.; Kang, Joo Youn – Multivariate Behavioral Research, 2006
A Monte Carlo study examined the statistical performance of single sample and bootstrap methods that can be used to test and form confidence interval estimates of indirect effects in two cluster randomized experimental designs. The designs were similar in that they featured random assignment of clusters to one of two treatment conditions and…
Descriptors: Monte Carlo Methods, Research Design, Mediation Theory, Comparative Testing
Peer reviewed Peer reviewed
Lunneborg, Clifford E.; Tousignant, James P. – Multivariate Behavioral Research, 1985
This paper illustrates an application of Efron's bootstrap to the repeated measures design. While this approach does not require parametric assumptions, it does utilize distributional information in the sample. By appropriately resampling from study data, the bootstrap may determine accurate sampling distributions for estimators, effects, or…
Descriptors: Hypothesis Testing, Research Design, Research Methodology, Sampling
Peer reviewed Peer reviewed
Keselman, H. J. – Multivariate Behavioral Research, 1982
The need for multiple comparison procedures for repeated measures means employing a pooled estimate of error variance to conform to the sphericity assumptions of the design in order to provide a valid test is discussed. An alternative approach which does not require this assumption is presented. (Author/JKS)
Descriptors: Analysis of Variance, Data Analysis, Hypothesis Testing, Research Design
Peer reviewed Peer reviewed
Huberty, Carl J.; Smith, Jerry D. – Multivariate Behavioral Research, 1982
A particular strategy for investigating effects from a multivariate analysis of variance (MANOVA) is proposed. The strategy involves multiple two-group multivariate analyses. The analysis strategy is described in detail and illustrated with real data sets. (Author/JKS)
Descriptors: Analysis of Variance, Data Analysis, Multivariate Analysis, Research Design
Peer reviewed Peer reviewed
Wiley, James B.; And Others – Multivariate Behavioral Research, 1984
The advantages and disadvantages of balanced incomplete block designs are clarified and their use is demonstrated with an empirical example. A procedure for reducing data of this type to analyzable form is proposed, and an analytical approach that is appropriate for the resulting data is illustrated. (Author/BW)
Descriptors: Behavioral Science Research, Data Analysis, Data Collection, Research Design
Previous Page | Next Page ยป
Pages: 1  |  2  |  3