NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Shi, Genghu; Wang, Lijia; Zhang, Liang; Shubeck, Keith; Peng, Shun; Hu, Xiangen; Graesser, Arthur C. – Grantee Submission, 2021
Adult learners with low literacy skills compose a highly heterogeneous population in terms of demographic variables, educational backgrounds, knowledge and skills in reading, self-efficacy, motivation etc. They also face various difficulties in consistently attending offline literacy programs, such as unstable worktime, transportation…
Descriptors: Intelligent Tutoring Systems, Adult Literacy, Adult Students, Reading Comprehension
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fang, Ying; Shubeck, Keith; Lippert, Anne; Chen, Qinyu; Shi, Genghu; Feng, Shi; Gatewood, Jessica; Chen, Su; Cai, Zhiqiang; Pavlik, Philip; Frijters, Jan; Greenberg, Daphne; Graesser, Arthur – Grantee Submission, 2018
A common goal of Intelligent Tutoring Systems (ITS) is to provide learning environments that adapt to the varying abilities and characteristics of users. To do this, researchers must identify the learning patterns exhibited by those interacting with the system. In the present work, we use clustering analysis to capture learning patterns in over…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Adult Literacy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Genghu; Hampton, Andrew J.; Chen, Su; Fang, Ying; Graesser, Arthur C. – Grantee Submission, 2018
We developed a version of AutoTutor that helps struggling adult learners improve their comprehension strategies through conversational agents. We hypothesized that the accuracy and time to answer questions during the conversation could be diagnostic of their mastery of different reading comprehension components: words, textbase, situation model,…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Reading Difficulties
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fang, Ying; Shubeck, Keith; Lippert, Anne; Cheng, Qinyu; Shi, Genghu; Feng, Shi; Gatewood, Jessica; Chen, Su; Cai, Zhiqiang; Pavlik, Philip; Frijters, Jan; Greenberg, Daphne; Graesser, Arthur – International Educational Data Mining Society, 2018
A common goal of Intelligent Tutoring Systems (ITS) is to provide learning environments that adapt to the varying abilities and characteristics of users. To do this, researchers must identify the learning patterns exhibited by those interacting with the system. In the present work, we use clustering analysis to capture learning patterns in over…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Adult Literacy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Genghu; Pavlik, Philip, Jr.; Graesser, Arthur – Grantee Submission, 2017
After developing an intelligent tutoring system (ITS), or any other class of learning environments, one of the first questions that should be asked is whether the system was effective in helping students learn the targeted skills or subject matter. In this study, we employed two educational data mining models (Additive Factor Model, AFM and…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Program Effectiveness