NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Policymakers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Emily J. Barnes – ProQuest LLC, 2024
This quantitative study investigates the predictive power of machine learning (ML) models on degree completion among adult learners in higher education, emphasizing the enhancement of data-driven decision-making (DDDM). By analyzing three ML models - Random Forest, Gradient-Boosting machine (GBM), and CART Decision Tree - within a not-for-profit,…
Descriptors: Artificial Intelligence, Higher Education, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
M. Nazir; A. Noraziah; M. Rahmah – International Journal of Virtual and Personal Learning Environments, 2023
An effective educational program warrants the inclusion of an innovative construction that enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational decision support system has currently been a hot topic in educational systems, facilitating the pupil…
Descriptors: Data Analysis, Academic Achievement, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Binbin Zhao; Rim Razzouk – International Journal of Web-Based Learning and Teaching Technologies, 2024
In order to promote the growth of contemporary music and the reform of music, this article designs an improved collaborative filtering (CF) algorithm to solve the problem of sparse matrix in traditional recommendation algorithms. The data matrix is dimensionally reduced to find the nearest neighbor, so as to realize personalized recommendation of…
Descriptors: Music Education, Higher Education, Teaching Methods, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Melissa Bond; Hassan Khosravi; Maarten De Laat; Nina Bergdahl; Violeta Negrea; Emily Oxley; Phuong Pham; Sin Wang Chong; George Siemens – International Journal of Educational Technology in Higher Education, 2024
Although the field of Artificial Intelligence in Education (AIEd) has a substantial history as a research domain, never before has the rapid evolution of AI applications in education sparked such prominent public discourse. Given the already rapidly growing AIEd literature base in higher education, now is the time to ensure that the field has a…
Descriptors: Meta Analysis, Artificial Intelligence, Databases, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jan Delcker; Joana Heil; Dirk Ifenthaler; Sabine Seufert; Lukas Spirgi – International Journal of Educational Technology in Higher Education, 2024
The influence of Artificial Intelligence on higher education is increasing. As important drivers for student retention and learning success, generative AI-tools like translators, paraphrasers and most lately chatbots can support students in their learning processes. The perceptions and expectations of first-years students related to AI-tools have…
Descriptors: Artificial Intelligence, Learning Processes, Higher Education, College Freshmen
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kudzayi Savious Tarisayi; Ronald Manhibi – Journal of Learning and Teaching in Digital Age, 2025
This paper critically examines the transformative potential of Artificial Intelligence (AI) in Zimbabwe's higher education system, focusing on how AI can enhance learning outcomes and optimize administrative processes. The study employs a qualitative research approach, gathering insights from key stakeholders in the educational sector to identify…
Descriptors: Foreign Countries, Artificial Intelligence, Technology Uses in Education, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Murad, Dina Fitria; Murad, Silvia Ayunda; Irsan, Muhamad – Journal of Educators Online, 2023
This study discusses the use of an online learning recommendation system as a smart solution related to changing the face-to-face learning process to online. This study uses user-based collaborative filtering, item-based collaborative filtering, and hybrid collaborative filtering. This research was conducted in two stages using the KNN machine…
Descriptors: Online Courses, Grades (Scholastic), Prediction, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Susnjak, Teo; Ramaswami, Gomathy Suganya; Mathrani, Anuradha – International Journal of Educational Technology in Higher Education, 2022
This study investigates current approaches to learning analytics (LA) dashboarding while highlighting challenges faced by education providers in their operationalization. We analyze recent dashboards for their ability to provide actionable insights which promote informed responses by learners in making adjustments to their learning habits. Our…
Descriptors: Learning Analytics, Computer Interfaces, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fedushko, Solomiia; Ustyianovych, Taras; Syerov, Yuriy – Journal of Intelligence, 2022
In this article, we provide an approach to solve the problem of academic specialty selection in higher educational institutions with Ukrainian entrants as our target audience. This concern affects operations at universities or other academic institutions, the labor market, and the availability of in-demand professionals. We propose a…
Descriptors: Higher Education, College Admission, Foreign Countries, Majors (Students)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
De La Hoz, Enrique; Zuluaga, Rohemi; Mendoza, Adel – Journal on Efficiency and Responsibility in Education and Science, 2021
This research uses a three-phase method to evaluate and forecast the academic efficiency of engineering programs. In the first phase, university profiles are created through cluster analysis. In the second phase, the academic efficiency of these profiles is evaluated through Data Envelopment Analysis. Finally, a machine learning model is trained…
Descriptors: Program Effectiveness, Program Evaluation, Engineering Education, Multivariate Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3