NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sanaz Nazari; Walter L. Leite; A. Corinne Huggins-Manley – Educational and Psychological Measurement, 2024
Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish…
Descriptors: Social Desirability, Bias, Artificial Intelligence, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Simon Šuster; Timothy Baldwin; Karin Verspoor – Research Synthesis Methods, 2024
Existing systems for automating the assessment of risk-of-bias (RoB) in medical studies are supervised approaches that require substantial training data to work well. However, recent revisions to RoB guidelines have resulted in a scarcity of available training data. In this study, we investigate the effectiveness of generative large language…
Descriptors: Medical Research, Safety, Experimental Groups, Control Groups
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kylie Anglin – AERA Open, 2024
Given the rapid adoption of machine learning methods by education researchers, and the growing acknowledgment of their inherent risks, there is an urgent need for tailored methodological guidance on how to improve and evaluate the validity of inferences drawn from these methods. Drawing on an integrative literature review and extending a…
Descriptors: Validity, Artificial Intelligence, Models, Best Practices
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nathalie Rzepka; Linda Fernsel; Hans-Georg Müller; Katharina Simbeck; Niels Pinkwart – Computer-Based Learning in Context, 2023
Algorithms and machine learning models are being used more frequently in educational settings, but there are concerns that they may discriminate against certain groups. While there is some research on algorithmic fairness, there are two main issues with the current research. Firstly, it often focuses on gender and race and ignores other groups.…
Descriptors: Algorithms, Artificial Intelligence, Models, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Bierema, Andrea; Hoskinson, Anne-Marie; Moscarella, Rosa; Lyford, Alex; Haudek, Kevin; Merrill, John; Urban-Lurain, Mark – International Journal of Research & Method in Education, 2021
As we take advantage of new technologies that allow us to streamline the coding process of large qualitative datasets, we must consider whether human cognitive bias may introduce statistical bias in the process. Our research group analyzes large sets of student responses by developing computer models that are trained using human-coded responses…
Descriptors: Cognitive Processes, Bias, Educational Researchers, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Wyness, Gill; Macmillan, Lindsey; Anders, Jake; Dilnot, Catherine – Education Economics, 2023
Students in the UK apply to university with teacher-predicted examination grades, rather than actual results. These predictions have been shown to be inaccurate, and to favour certain groups, leading to concerns about teacher bias. We ask whether it is possible to improve on the accuracy of teachers' predictions by predicting pupil achievement…
Descriptors: Foreign Countries, Prediction, Grades (Scholastic), Expectation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Qian; Rangwala, Huzefa – International Educational Data Mining Society, 2020
Over the past decade, machine learning has become an integral part of educational technologies. With more and more applications such as students' performance prediction, course recommendation, dropout prediction and knowledge tracing relying upon machine learning models, there is increasing evidence and concerns about bias and unfairness of these…
Descriptors: Artificial Intelligence, Bias, Learning Analytics, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Arantes, Janine Aldous – Australian Educational Researcher, 2023
Recent negotiations of 'data' in schools place focus on student assessment and NAPLAN. However, with the rise in artificial intelligence (AI) underpinning educational technology, there is a need to shift focus towards the value of teachers' digital data. By doing so, the broader debate surrounding the implications of these technologies and rights…
Descriptors: Foreign Countries, Elementary Secondary Education, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Gillani, Nabeel; Eynon, Rebecca; Chiabaut, Catherine; Finkel, Kelsey – Educational Technology & Society, 2023
Recent advances in Artificial Intelligence (AI) have sparked renewed interest in its potential to improve education. However, AI is a loose umbrella term that refers to a collection of methods, capabilities, and limitations--many of which are often not explicitly articulated by researchers, education technology companies, or other AI developers.…
Descriptors: Artificial Intelligence, Technology Uses in Education, Educational Technology, Educational Benefits
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Odiel Estrada-Molina; Juanjo Mena; Alexander López-Padrón – International Review of Research in Open and Distributed Learning, 2024
No records of systematic reviews focused on deep learning in open learning have been found, although there has been some focus on other areas of machine learning. Through a systematic review, this study aimed to determine the trends, applied computational techniques, and areas of educational use of deep learning in open learning. The PRISMA…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Open Education, Educational Trends
Li, Chenglu; Xing, Wanli; Leite, Walter L. – Grantee Submission, 2021
There has been a long-standing issue of sparse discussion forums participation in online learning, which can impede students' help seeking practices. Researchers have examined AI techniques such as link prediction with network analysis to connect help seekers with help providers. However, little is known whether these AI systems will treat…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Rybinski, Krzysztof; Kopciuszewska, Elzbieta – Assessment & Evaluation in Higher Education, 2021
This article presents the first-ever big data study of the student evaluation of teaching (SET) using artificial intelligence (AI). We train natural language processing (NLP) models on 1.6 million student evaluations from the US and the UK. We address two research questions: (1) are these models able to predict student ratings from the student…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation of Teacher Performance, Natural Language Processing