NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 16 to 30 of 95 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H. – Journal of Chemical Education, 2016
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Descriptors: Chemistry, Computer Graphics, Models, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Montgomery, Craig D. – Journal of Chemical Education, 2015
An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…
Descriptors: Science Instruction, Molecular Structure, Inorganic Chemistry, Metallurgy
Peer reviewed Peer reviewed
Direct linkDirect link
Cooke, Jason; Hebert, Dominique; Kelly, Joel A. – Journal of Chemical Education, 2015
This work describes a convenient and reliable laboratory experiment in nanochemistry that is flexible and adaptable to a wide range of educational settings. The rapid preparation of yellow colloidal silver nanoparticles is achieved by glucose reduction of silver nitrate in the presence of starch and sodium citrate in gently boiling water, using…
Descriptors: Science Instruction, Science Laboratories, Science Experiments, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Malcolm L. H.; Parkin, Gerard – Journal of Chemical Education, 2014
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
Descriptors: Science Instruction, Inorganic Chemistry, College Science, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Cushman, Cody V.; Linford, Matthew R. – Journal of Chemical Education, 2015
The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…
Descriptors: Chemistry, Physical Sciences, Fundamental Concepts, Concept Teaching
Peer reviewed Peer reviewed
Direct linkDirect link
Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R. – Journal of Chemical Education, 2015
The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…
Descriptors: College Science, Science Instruction, Undergraduate Study, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G. – Journal of Chemical Education, 2015
This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…
Descriptors: Science Instruction, Thermodynamics, Spectroscopy, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Horikoshi, Ryo; Kobayashi, Yoji; Kageyama, Hiroshi – Journal of Chemical Education, 2013
Catalysis with transition-metal complexes is a part of the inorganic chemistry curriculum and a challenging topic for upper-level undergraduate and graduate students. A hands-on teaching aid has been developed for use during conventional lectures to help students understand these catalytic reactions. A unique method of illustrating the…
Descriptors: Science Instruction, Inorganic Chemistry, Hands on Science, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Adam R. – Journal of Chemical Education, 2013
A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…
Descriptors: Inorganic Chemistry, Molecular Structure, Visual Aids, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
McClellan, Michael J.; Cass, Marion E. – Journal of Chemical Education, 2015
This communication is a collection of additions and modifications to two previously published classic inorganic synthesis laboratory experiments. The experimental protocol for the synthesis and isolation of enantiomerically enriched ?- (or ?-)Co(en)[subscript 3]I[subscript 3] has been modified to increase reproducibility, yield, and enantiomeric…
Descriptors: Laboratory Experiments, Inorganic Chemistry, Synthesis, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Adhikary, Chandan; Sana, Sibananda; Chattopadhyay, K. N. – Journal of Chemical Education, 2015
Chunk-based strategy and mnemonics have been developed to write ground state electron configurations of elements, which is a routine exercise for the higher secondary (pre-university) level general chemistry students. To assimilate a better understanding of the nature of chemical reactions, an adequate knowledge of the periodic table of elements…
Descriptors: Molecular Structure, Teaching Methods, Educational Strategies, Educational Practices
Peer reviewed Peer reviewed
Direct linkDirect link
Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A. – Journal of Chemical Education, 2013
The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…
Descriptors: College Science, Science Instruction, Undergraduate Study, Inorganic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez-Fernandez, Emilio – Journal of Chemical Education, 2013
By using cardboard models that resemble propellers, the students of inorganic courses can easily visualizing the distinct rotation of optical isomers. These propellers rotate clockwise or counterclockwise when they are dropped from a certain height or in the presence of wind. (Contains 1 figure.)
Descriptors: Science Instruction, Inorganic Chemistry, Scientific Concepts, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kuntzleman, Thomas Scott; Rohrer, Kristen; Schultz, Emeric – Journal of Chemical Education, 2012
Lightsticks, or glowsticks as they are sometimes called, are perhaps the chemist's quintessential toy. Because they are easy to activate and appealing to observe, experimenting with lightsticks provides a great way to get young people interested in science. Thus, we have used lightsticks to teach chemical concepts in a variety of outreach settings…
Descriptors: Inorganic Chemistry, Thermodynamics, Physics, Demonstrations (Educational)
Peer reviewed Peer reviewed
Direct linkDirect link
Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika – Journal of Chemical Education, 2013
The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…
Descriptors: Science Instruction, College Science, Inorganic Chemistry, Undergraduate Study
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7