Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 30 |
Since 2016 (last 10 years) | 93 |
Since 2006 (last 20 years) | 216 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
Teachers | 51 |
Practitioners | 43 |
Researchers | 7 |
Students | 2 |
Location
Greece | 6 |
Australia | 5 |
Indonesia | 4 |
Sweden | 3 |
Turkey | 3 |
Brazil | 2 |
California | 2 |
Israel | 2 |
Oman | 2 |
Slovenia | 2 |
Taiwan | 2 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Klymkowsky, Michael W.; Rentsch, Jeremy D.; Begovic, Emina; Cooper, Melanie M. – CBE - Life Sciences Education, 2016
Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the…
Descriptors: Science Instruction, Biology, Educational Change, Introductory Courses
Petrovic, Dus?an; Zlatovic´, Mario – Journal of Chemical Education, 2015
A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…
Descriptors: Science Experiments, Laboratory Experiments, Undergraduate Study, College Science
Davenport, Jodi; Silberglitt, Matt; Olson, Arthur – Grantee Submission, 2013
How do viruses self-assemble? Why do DNA bases pair the way they do? What factors determine whether strands of proteins fold into sheets or helices? Why does handedness matter? A deep understanding of core issues in biology requires students to understand both complex spatial structures of molecules and the interactions involved in dynamic…
Descriptors: Molecular Structure, Models, Molecular Biology, Printing
Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios – Chemistry Education Research and Practice, 2017
Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…
Descriptors: Cognitive Structures, Schemata (Cognition), Models, Nuclear Physics
Menéndez, M. Isabel; Borge, Javier – Journal of Chemical Education, 2014
The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…
Descriptors: Science Instruction, College Science, Molecular Structure, Chemistry
Gustafson, Brenda; Mahaffy, Peter; Martin, Brian – Journal of Computers in Mathematics and Science Teaching, 2015
This paper focuses on one Grade 5 class (9 females; 9 males) who worked in student-pairs to view five digital learning object (DLO) lessons created by the authors and meant to introduce students to the nature of models, the particle nature of matter, and physical change. Specifically, the paper focuses on whether DLO design elements could assist…
Descriptors: Grade 5, Cooperative Learning, Resource Units, Scientific Concepts
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Taber, Keith S.; Tsaparlis, Georgios; Nakiboglu, Canan – International Journal of Science Education, 2012
Previous research has reported that students commonly develop alternative conceptions in the core topic of chemical bonding. Research in England has reported that students there commonly demonstrate an alternative "molecular" conceptual framework for thinking about ionic bonding: in terms of the formation of molecule-like ions pairs…
Descriptors: Chemistry, Foreign Countries, National Curriculum, Science Education
Clark, Ted M.; Chamberlain, Julia M. – Journal of Chemical Education, 2014
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
Descriptors: Simulation, Science Laboratories, Science Instruction, Molecular Structure
Blauch, David N.; Carroll, Felix A. – Journal of Chemical Education, 2014
A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.
Descriptors: Computer Peripherals, Educational Technology, Technology Uses in Education, Energy
Davenport, Jodi L.; Silberglitt, Matt; Boxerman, Jonathan; Olson, Arthur – Grantee Submission, 2014
3D models derived from actual molecular structures have the potential to transform student learning in biology. We share findings related to our research questions: 1) what types of interactions with a protein folding kit promote specific learning objectives?, and 2) what features of the instructional environment (e.g., peer interactions, teacher…
Descriptors: Geometric Concepts, Depth Perception, Spatial Ability, Models
Anthony, Seth – ProQuest LLC, 2014
Part I: Students' participation in inquiry-based chemistry laboratory curricula, and, in particular, engagement with key thinking processes in conjunction with these experiences, is linked with success at the difficult task of "transfer"--applying their knowledge in new contexts to solve unfamiliar types of problems. We investigate…
Descriptors: Chemistry, Scientific Concepts, Transfer of Training, Problem Solving
Joseph M. Hayes – Journal of Chemical Education, 2014
A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…
Descriptors: Visualization, Models, Visual Aids, Undergraduate Students
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Representations of Chemical Bonding Models in School Textbooks--Help or Hindrance for Understanding?
Bergqvist, Anna; Drechsler, Michal; De Jong, Onno; Rundgren, Shu-Nu Chang – Chemistry Education Research and Practice, 2013
Models play an important and central role in science as well as in science education. Chemical bonding is one of the most important topics in upper secondary school chemistry, and this topic is dominated by the use of models. In the past decade, research has shown that chemical bonding is a topic that students find difficult, and therefore, a wide…
Descriptors: Textbook Content, Textbook Research, Content Analysis, Molecular Structure