NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 61 to 75 of 934 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Joseph; Pollard, Benjamin; Aiken, John M.; Lewandowski, H. J. – Physical Review Physics Education Research, 2022
Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights…
Descriptors: Natural Language Processing, Science Education, Physics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Trott, Sean; Jones, Cameron; Chang, Tyler; Michaelov, James; Bergen, Benjamin – Cognitive Science, 2023
Humans can attribute beliefs to others. However, it is unknown to what extent this ability results from an innate biological endowment or from experience accrued through child development, particularly exposure to language describing others' mental states. We test the viability of the language exposure hypothesis by assessing whether models…
Descriptors: Models, Language Processing, Beliefs, Child Development
Bogdan Nicula; Mihai Dascalu; Tracy Arner; Renu Balyan; Danielle S. McNamara – Grantee Submission, 2023
Text comprehension is an essential skill in today's information-rich world, and self-explanation practice helps students improve their understanding of complex texts. This study was centered on leveraging open-source Large Language Models (LLMs), specifically FLAN-T5, to automatically assess the comprehension strategies employed by readers while…
Descriptors: Reading Comprehension, Language Processing, Models, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Margaret A.L. Blackie – Teaching in Higher Education, 2024
Large language models such as ChatGPT can be seen as a major threat to reliable assessment in higher education. In this point of departure, I argue that these tools are a major game changer for society at large. Many of the jobs we now consider highly skilled are based on pattern recognition that can much more reliably be carried by fine-tuned…
Descriptors: Artificial Intelligence, Synchronous Communication, Science and Society, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Pedro Isaias, Editor; Demetrios G. Sampson, Editor; Dirk Ifenthaler, Editor – Cognition and Exploratory Learning in the Digital Age, 2024
The Cognition and Exploratory Learning in the Digital Age (CELDA) conference focuses on discussing and addressing the challenges pertaining to the evolution of the learning process, the role of pedagogical approaches and the progress of technological innovation, in the context of the digital age. In each edition, CELDA, gathers researchers and…
Descriptors: Artificial Intelligence, Cognitive Processes, Discovery Learning, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
van Schijndel, Marten; Linzen, Tal – Cognitive Science, 2021
The disambiguation of a syntactically ambiguous sentence in favor of a less preferred parse can lead to slower reading at the disambiguation point. This phenomenon, referred to as a garden-path effect, has motivated models in which readers initially maintain only a subset of the possible parses of the sentence, and subsequently require…
Descriptors: Syntax, Ambiguity (Semantics), Reading Processes, Linguistic Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Sinclair, Jeanne; Jang, Eunice Eunhee; Rudzicz, Frank – Journal of Educational Psychology, 2021
Advances in machine learning (ML) are poised to contribute to our understanding of the linguistic processes associated with successful reading comprehension, which is a critical aspect of children's educational success. We used ML techniques to investigate and compare associations between children's reading comprehension and 260 linguistic…
Descriptors: Prediction, Reading Comprehension, Natural Language Processing, Speech Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Min Kyu; Gaul, Cassandra J.; Kim, So Mi; Madathany, Reeny J. – Technology, Knowledge and Learning, 2020
While key concepts embedded within an expert's textual explanation have been considered an aspect of expert model, the complexity of textual data makes determining key concepts demanding and time consuming. To address this issue, we developed Student Mental Model Analyzer for Teaching and Learning (SMART) technology that can analyze an experts'…
Descriptors: Natural Language Processing, Educational Technology, Concept Mapping, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Emerson, Andrew; Min, Wookhee; Azevedo, Roger; Lester, James – British Journal of Educational Technology, 2023
Game-based learning environments hold significant promise for facilitating learning experiences that are both effective and engaging. To support individualised learning and support proactive scaffolding when students are struggling, game-based learning environments should be able to accurately predict student knowledge at early points in students'…
Descriptors: Game Based Learning, Natural Language Processing, Prediction, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Binh Nguyen Thanh; Diem Thi Hong Vo; Minh Nguyen Nhat; Thi Thu Tra Pham; Hieu Thai Trung; Son Ha Xuan – Australasian Journal of Educational Technology, 2023
In this study, we introduce a framework designed to help educators assess the effectiveness of popular generative artificial intelligence (AI) tools in solving authentic assessments. We employed Bloom's taxonomy as a guiding principle to create authentic assessments that evaluate the capabilities of generative AI tools. We applied this framework…
Descriptors: Artificial Intelligence, Models, Performance Based Assessment, Economics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Mar Díaz-Millón – Interpreter and Translator Trainer, 2023
The term "transcreation" has become popular over the last decade in the language services industry. It has also gained traction in the creative industries. Previous research demonstrates there is an interest in introducing transcreation training in Translation and Interpreting studies, possibly as a result of its growing popularity in…
Descriptors: Delphi Technique, Translation, Second Languages, Language Processing
Peter Organisciak; Selcuk Acar; Denis Dumas; Kelly Berthiaume – Grantee Submission, 2023
Automated scoring for divergent thinking (DT) seeks to overcome a key obstacle to creativity measurement: the effort, cost, and reliability of scoring open-ended tests. For a common test of DT, the Alternate Uses Task (AUT), the primary automated approach casts the problem as a semantic distance between a prompt and the resulting idea in a text…
Descriptors: Automation, Computer Assisted Testing, Scoring, Creative Thinking
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bima Sapkota; Liza Bondurant – International Journal of Technology in Education, 2024
In November 2022, ChatGPT, an Artificial Intelligence (AI) large language model (LLM) capable of generating human-like responses, was launched. ChatGPT has a variety of promising applications in education, such as using it as thought-partner in generating curricular resources. However, scholars also recognize that the use of ChatGPT raises…
Descriptors: Cognitive Processes, Difficulty Level, Artificial Intelligence, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Wai Tong Chor; Kam Meng Goh; Li Li Lim; Kin Yun Lum; Tsung Heng Chiew – Education and Information Technologies, 2024
The programme outcomes are broad statements of knowledge, skills, and competencies that the students should be able to demonstrate upon graduation from a programme, while the Educational Taxonomy classifies learning objectives into different domains. The precise mapping of a course outcomes to the programme outcome and the educational taxonomy…
Descriptors: Artificial Intelligence, Engineering Education, Taxonomy, Educational Objectives
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  63