Publication Date
In 2025 | 0 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 18 |
Since 2016 (last 10 years) | 24 |
Since 2006 (last 20 years) | 26 |
Descriptor
Artificial Intelligence | 28 |
Models | 28 |
Undergraduate Students | 28 |
Foreign Countries | 14 |
Prediction | 13 |
Teaching Methods | 9 |
Technology Uses in Education | 7 |
Academic Achievement | 6 |
At Risk Students | 6 |
Classification | 6 |
Computer Software | 6 |
More ▼ |
Source
Author
Abdullah, Rina | 1 |
Ardakani, Saeid Pourroostaei | 1 |
Arnon Hershkovitz | 1 |
Barnes, Tiffany | 1 |
Battou, Amal | 1 |
Bo Pei | 1 |
Bojan-Dragos, Claudia-Adina | 1 |
Bosch, Nigel | 1 |
Bousnguar, Hassan | 1 |
Cantero, Pablo | 1 |
Cerchiara, Jack A. | 1 |
More ▼ |
Publication Type
Reports - Research | 21 |
Journal Articles | 18 |
Speeches/Meeting Papers | 8 |
Reports - Evaluative | 3 |
Collected Works - Proceedings | 2 |
Tests/Questionnaires | 2 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 26 |
Postsecondary Education | 26 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 8 | 1 |
High Schools | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Location
China | 3 |
Australia | 2 |
Brazil | 2 |
Philippines | 2 |
South Korea | 2 |
Asia | 1 |
Canada | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xiaojing Duan; Bo Pei; G. Alex Ambrose; Arnon Hershkovitz; Ying Cheng; Chaoli Wang – Education and Information Technologies, 2024
Providing educators with understandable, actionable, and trustworthy insights drawn from large-scope heterogeneous learning data is of paramount importance in achieving the full potential of artificial intelligence (AI) in educational settings. Explainable AI (XAI)--contrary to the traditional "black-box" approach--helps fulfilling this…
Descriptors: Academic Achievement, Artificial Intelligence, Prediction, Models
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Guiqin Liang; Chunsong Jiang; Qiuzhe Ping; Xinyi Jiang – Interactive Learning Environments, 2024
With long-term impact of COVID-19 on education, online interactive live courses have been an effective method to keep learning and teaching from being interrupted, attracting more and more attention due to their synchronous and real-time interaction. However, there is no suitable method for predicting academic performance for students…
Descriptors: Academic Achievement, Prediction, Engineering Education, Online Courses
Shiao, Yi-Tzone; Chen, Cheng-Huan; Wu, Ke-Fei; Chen, Bae-Ling; Chou, Yu-Hui; Wu, Trong-Neng – Smart Learning Environments, 2023
In recent years, initiatives and the resulting application of precision education have been applied with increasing frequency in Taiwan; the accompanying discourse has focused on identifying potential applications for artificial intelligence and how to use learning analytics to improve teaching quality and learning outcomes. This study used the…
Descriptors: Foreign Countries, Dropout Prevention, Models, Sustainability
D. V. D. S. Abeysinghe; M. S. D. Fernando – IAFOR Journal of Education, 2024
"Education is the key to success," one of the most heard motivational statements by all of us. People engage in education at different phases of our lives in various forms. Among them, university education plays a vital role in our academic and professional lives. During university education many undergraduates will face several…
Descriptors: Models, At Risk Students, Mentors, Undergraduate Students
Yang, Qi-Fan; Lian, Li-Wen; Zhao, Jia-Hua – International Journal of Educational Technology in Higher Education, 2023
According to previous studies, traditional laboratory safety courses are delivered in a classroom setting where the instructor teaches and the students listen and read the course materials passively. The course content is also uninspiring and dull. Additionally, the teaching period is spread out, which adds to the instructor's workload. As a…
Descriptors: Undergraduate Students, Gamification, Artificial Intelligence, Robotics
Bousnguar, Hassan; Najdi, Lotfi; Battou, Amal – Education and Information Technologies, 2022
Forecasting the enrollments of new students in bachelor's systems became an urgent desire in the majority of higher education institutions. It represents an important stage in the process of making strategic decisions for new course's accreditation and optimization of resources. To gain a deep view of the educational forecasting context, the most…
Descriptors: Higher Education, Undergraduate Students, Enrollment Management, Strategic Planning
Misato Hiraga – ProQuest LLC, 2024
This dissertation developed a new learner corpus of Japanese and introduced an error and linguistic annotation scheme specifically designed for Japanese particles. The corpus contains texts written by learners who are in the first year to fourth year university level Japanese courses. The texts in the corpus were tagged with part-of-speech and…
Descriptors: Japanese, Computational Linguistics, Form Classes (Languages), Error Analysis (Language)
Liu, Xinyang; Ardakani, Saeid Pourroostaei – Education and Information Technologies, 2022
The purpose of this study is to propose an e-learning system model for learning content personalisation based on students' emotions. The proposed system collects learners' brainwaves using a portable Electroencephalogram and processes them via a supervised machine learning algorithm, named K-nearest neighbours (KNN), to recognise real-time…
Descriptors: Foreign Countries, Undergraduate Students, Electronic Learning, Artificial Intelligence
K. Keerthi Jain; J. N. V. Raghuram – Education and Information Technologies, 2024
This research delves into the multifaceted landscape of various factors that influence the adoption of Generation-Artificial Intelligence (Gen-AI) in Higher Education. By employing a comprehensive framework that includes perceived risk, perceived ease of use, usefulness, Technological Pedagogical Content Knowledge (TPACK), and trust, the study…
Descriptors: Prediction, Artificial Intelligence, Technological Literacy, Pedagogical Content Knowledge
Magsayo, Roche Tumlad – International Journal of Information and Learning Technology, 2021
Purpose: The study aims to determine the factor of perceived machine learning adoption (MLA) values that affect learners' intention to continue using (ICU), the extent of their relationships in the learners' ICU and the role of locus of control (LOC) in their relationship. Design/methodology/approach: The study employed a rigorous literature…
Descriptors: Foreign Countries, Rural Schools, Higher Education, Artificial Intelligence
Jescovitch, Lauren N.; Scott, Emily E.; Cerchiara, Jack A.; Merrill, John; Urban-Lurain, Mark; Doherty, Jennifer H.; Haudek, Kevin C. – Journal of Science Education and Technology, 2021
We systematically compared two coding approaches to generate training datasets for machine learning (ML): (1) a holistic approach based on learning progression levels; and (2) a dichotomous, analytic approach of multiple concepts in student reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for…
Descriptors: Science Instruction, Coding, Artificial Intelligence, Man Machine Systems
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Cui, Ying; Chen, Fu; Shiri, Ali – Information and Learning Sciences, 2020
Purpose: This study aims to investigate the feasibility of developing general predictive models for using the learning management system (LMS) data to predict student performances in various courses. The authors focused on examining three practical but important questions: are there a common set of student activity variables that predict student…
Descriptors: Foreign Countries, Identification, At Risk Students, Prediction
Deliang Wang; Yaqian Zheng; Gaowei Chen – Educational Technology & Society, 2024
This study investigates the potential of ChatGPT, a cutting-edge large language model in generative artificial intelligence (AI), to support the teaching of dialogic pedagogy to preservice teachers. A workshop was conducted with 29 preservice teachers, wherein ChatGPT and another prominent AI model, Bert, were sequentially integrated to facilitate…
Descriptors: Artificial Intelligence, Preservice Teachers, Models, Teaching Methods
Previous Page | Next Page ยป
Pages: 1 | 2