Publication Date
In 2025 | 0 |
Since 2024 | 17 |
Since 2021 (last 5 years) | 55 |
Since 2016 (last 10 years) | 129 |
Since 2006 (last 20 years) | 302 |
Descriptor
Models | 376 |
Test Items | 376 |
Item Response Theory | 334 |
Difficulty Level | 87 |
Simulation | 76 |
Foreign Countries | 69 |
Psychometrics | 64 |
Item Analysis | 60 |
Computation | 57 |
Comparative Analysis | 56 |
Test Construction | 55 |
More ▼ |
Source
Author
Wang, Wen-Chung | 9 |
van der Linden, Wim J. | 9 |
von Davier, Matthias | 8 |
De Boeck, Paul | 5 |
Paek, Insu | 5 |
DeMars, Christine E. | 4 |
Janssen, Rianne | 4 |
Jin, Kuan-Yu | 4 |
Wilson, Mark | 4 |
Ackerman, Terry | 3 |
Baghaei, Purya | 3 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 4 |
Practitioners | 2 |
Students | 1 |
Location
Germany | 6 |
Iran | 5 |
Netherlands | 5 |
United States | 5 |
China | 4 |
South Korea | 4 |
Canada | 3 |
Indonesia | 3 |
Singapore | 3 |
Taiwan | 3 |
Turkey | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Maria Bolsinova; Jesper Tijmstra; Leslie Rutkowski; David Rutkowski – Journal of Educational and Behavioral Statistics, 2024
Profile analysis is one of the main tools for studying whether differential item functioning can be related to specific features of test items. While relevant, profile analysis in its current form has two restrictions that limit its usefulness in practice: It assumes that all test items have equal discrimination parameters, and it does not test…
Descriptors: Test Items, Item Analysis, Generalizability Theory, Achievement Tests
Sample Size and Item Parameter Estimation Precision When Utilizing the Masters' Partial Credit Model
Custer, Michael; Kim, Jongpil – Online Submission, 2023
This study utilizes an analysis of diminishing returns to examine the relationship between sample size and item parameter estimation precision when utilizing the Masters' Partial Credit Model for polytomous items. Item data from the standardization of the Batelle Developmental Inventory, 3rd Edition were used. Each item was scored with a…
Descriptors: Sample Size, Item Response Theory, Test Items, Computation
Jianbin Fu; Xuan Tan; Patrick C. Kyllonen – Journal of Educational Measurement, 2024
This paper presents the item and test information functions of the Rank two-parameter logistic models (Rank-2PLM) for items with two (pair) and three (triplet) statements in forced-choice questionnaires. The Rank-2PLM model for pairs is the MUPP-2PLM (Multi-Unidimensional Pairwise Preference) and, for triplets, is the Triplet-2PLM. Fisher's…
Descriptors: Questionnaires, Test Items, Item Response Theory, Models
Huang, Sijia; Luo, Jinwen; Cai, Li – Educational and Psychological Measurement, 2023
Random item effects item response theory (IRT) models, which treat both person and item effects as random, have received much attention for more than a decade. The random item effects approach has several advantages in many practical settings. The present study introduced an explanatory multidimensional random item effects rating scale model. The…
Descriptors: Rating Scales, Item Response Theory, Models, Test Items
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Xiangyi Liao; Daniel M Bolt – Educational Measurement: Issues and Practice, 2024
Traditional approaches to the modeling of multiple-choice item response data (e.g., 3PL, 4PL models) emphasize slips and guesses as random events. In this paper, an item response model is presented that characterizes both disjunctively interacting guessing and conjunctively interacting slipping processes as proficiency-related phenomena. We show…
Descriptors: Item Response Theory, Test Items, Error Correction, Guessing (Tests)
Jochen Ranger; Christoph König; Benjamin W. Domingue; Jörg-Tobias Kuhn; Andreas Frey – Journal of Educational and Behavioral Statistics, 2024
In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension…
Descriptors: Models, Statistical Distributions, Item Response Theory, Response Rates (Questionnaires)
Soysal, Sumeyra; Yilmaz Kogar, Esin – International Journal of Assessment Tools in Education, 2022
The testlet comprises a set of items based on a common stimulus. When the testlet is used in the tests, there may violate the local independence assumption, and in this case, it would not be appropriate to use traditional item response theory models in the tests in which the testlet is included. When the testlet is discussed, one of the most…
Descriptors: Test Items, Test Theory, Models, Sample Size
Martijn Schoenmakers; Jesper Tijmstra; Jeroen Vermunt; Maria Bolsinova – Educational and Psychological Measurement, 2024
Extreme response style (ERS), the tendency of participants to select extreme item categories regardless of the item content, has frequently been found to decrease the validity of Likert-type questionnaire results. For this reason, various item response theory (IRT) models have been proposed to model ERS and correct for it. Comparisons of these…
Descriptors: Item Response Theory, Response Style (Tests), Models, Likert Scales
Güler Yavuz Temel – Journal of Educational Measurement, 2024
The purpose of this study was to investigate multidimensional DIF with a simple and nonsimple structure in the context of multidimensional Graded Response Model (MGRM). This study examined and compared the performance of the IRT-LR and Wald test using MML-EM and MHRM estimation approaches with different test factors and test structures in…
Descriptors: Computation, Multidimensional Scaling, Item Response Theory, Models
Gyamfi, Abraham; Acquaye, Rosemary – Acta Educationis Generalis, 2023
Introduction: Item response theory (IRT) has received much attention in validation of assessment instrument because it allows the estimation of students' ability from any set of the items. Item response theory allows the difficulty and discrimination levels of each item on the test to be estimated. In the framework of IRT, item characteristics are…
Descriptors: Item Response Theory, Models, Test Items, Difficulty Level
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Mostafa Hosseinzadeh; Ki Lynn Matlock Cole – Educational and Psychological Measurement, 2024
In real-world situations, multidimensional data may appear on large-scale tests or psychological surveys. The purpose of this study was to investigate the effects of the quantity and magnitude of cross-loadings and model specification on item parameter recovery in multidimensional Item Response Theory (MIRT) models, especially when the model was…
Descriptors: Item Response Theory, Models, Maximum Likelihood Statistics, Algorithms
Pham, Duy N.; Wells, Craig S.; Bauer, Malcolm I.; Wylie, E. Caroline; Monroe, Scott – Applied Measurement in Education, 2021
Assessments built on a theory of learning progressions are promising formative tools to support learning and teaching. The quality and usefulness of those assessments depend, in large part, on the validity of the theory-informed inferences about student learning made from the assessment results. In this study, we introduced an approach to address…
Descriptors: Formative Evaluation, Mathematics Instruction, Mathematics Achievement, Middle School Students