NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 56 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Chia-An; Huang, Nen-Fu; Tzeng, Jian-Wei; Tsai, Pin-Han – IEEE Transactions on Learning Technologies, 2023
Massive open online courses offer a valuable platform for efficient and flexible learning. They can improve teaching and learning effectiveness by enabling the evaluation of learning behaviors and the collection of feedback from students. The knowledge map approach constitutes a suitable tool for evaluating and presenting students' learning…
Descriptors: Artificial Intelligence, MOOCs, Concept Mapping, Student Evaluation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu, Jiaqi; Ma, Wenchao; Moon, Jewoong; Denham, Andre R. – Journal of Learning Analytics, 2022
Integrating learning analytics in digital game-based learning has gained popularity in recent decades. The interactive nature of educational games creates an ideal environment for learning analytics data collection. However, past research has limited success in producing accessible and effective assessments using game learning analytics. In this…
Descriptors: Learning Analytics, Student Evaluation, Educational Games, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Mandel, Travis Scott – ProQuest LLC, 2017
When a new student comes to play an educational game, how can we determine what content to give them such that they learn as much as possible? When a frustrated customer calls in to a helpline, how can we determine what to say to best assist them? When an ill patient comes in to the clinic, how do we determine what tests to run and treatments to…
Descriptors: Reinforcement, Learning Processes, Student Evaluation, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Alonzo, Alicia C.; Elby, Andrew – Cognition and Instruction, 2019
As scientific models of student thinking, learning progressions (LPs) have been evaluated in terms of one important, but limited, criterion: fit to empirical data. We argue that LPs are not empirically adequate, largely because they rely on problematic assumptions of theory-like coherence in students' thinking. Through an empirical investigation…
Descriptors: Science Teachers, Physics, Models, Learning Processes
Jimenez, Laura – Center for American Progress, 2020
Schools face enormous challenges regarding how to operate efficiently and safely for the 2020-21 school year. As part of that response, some state leaders are asking the U.S. Department of Education to waive the annual federal testing and accountability requirements for 2021, which are key to understanding and addressing gaps in education among…
Descriptors: COVID-19, Pandemics, Disease Control, Well Being
Peer reviewed Peer reviewed
Direct linkDirect link
DiCerbo, Kristen E.; Xu, Yuning; Levy, Roy; Lai, Emily; Holland, Laura – Educational Assessment, 2017
Inferences about student knowledge, skills, and attributes based on digital activity still largely come from whether students ultimately get a correct result or not. However, the ability to collect activity stream data as individuals interact with digital environments provides information about students' processes as they progress through learning…
Descriptors: Models, Cognitive Processes, Elementary School Students, Grade 3
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models
Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin – International Educational Data Mining Society, 2015
We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…
Descriptors: Middle School Students, Problem Solving, Educational Games, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ren, Zhiyun; Rangwala, Huzefa; Johri, Aditya – International Educational Data Mining Society, 2016
The past few years has seen the rapid growth of data mining approaches for the analysis of data obtained from Massive Open Online Courses (MOOCs). The objectives of this study are to develop approaches to predict the scores a student may achieve on a given grade-related assessment based on information, considered as prior performance or prior…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Crawford, Lindy – Preventing School Failure, 2014
This article discusses the role of assessment in a response-to-intervention model. Although assessment represents only 1 component in a response-to-intervention model, a well-articulated assessment system is critical in providing teachers with reliable data that are easily interpreted and used to make instructional decisions. Three components of…
Descriptors: Intervention, Models, Response to Intervention, Student Evaluation
Allevato, Anthony J. – ProQuest LLC, 2012
Educators in many disciplines are too often forced to rely on intuition about how students learn and the effectiveness of teaching to guide changes and improvements to their curricula. In computer science, systems that perform automated collection and assessment of programming assignments are seeing increased adoption, and these systems generate a…
Descriptors: Computer Science Education, Intuition, Grading, Computer Assisted Testing
Hendrickson, Amy; Huff, Kristen; Luecht, Ric – College Board, 2009
[Slides] presented at the Annual Meeting of National Council on Measurement in Education (NCME) in San Diego, CA in April 2009. This presentation describes how the vehicles for gathering student evidence--task models and test specifications--are developed.
Descriptors: Test Items, Test Construction, Evidence, Achievement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4