NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 50 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Angela Bassoli – Journal of Chemical Education, 2024
Organic molecules are invisible objects, but they can be visualized and manipulated by using molecular models. The object-based learning (OBL) approach, which is an educational tool developed for museums and collection items, is tailored and applied to a first-year bachelor course of organic chemistry. At the beginning of the course, each student…
Descriptors: Organic Chemistry, Science Instruction, Undergraduate Study, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Elijah St. Germain – Journal of Chemical Education, 2025
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models…
Descriptors: Organic Chemistry, Science Instruction, Competency Based Education, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Quayson, Claudia; Kwarteng, Twumasi Ankrah; Koranteng, Ernest; Hanson, Ruby – Science Education International, 2022
The study diagnosed chemistry teacher trainees' difficulties in naming and writing structures of spiro and bicyclic compounds. The case study design was conducted in a constructivist environment to enhance chemistry teacher trainees' ability to construct, represent, and interpret the structural formulae of spiro and bicyclic compounds. Purposive…
Descriptors: Science Teachers, Preservice Teachers, Scientific Concepts, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Adrienne M. Pesce; Daniel B. King – Journal of Chemical Education, 2023
Novice chemists often struggle with the highly visual nature of some chemistry topics. To make visually demanding concepts, such as isomerism and stereochemistry, more accessible to students, chemistry instructors have long recommended the use of molecular model kits as visual aids. However, studies pertaining to student model usage have shown…
Descriptors: Student Attitudes, Molecular Structure, Science Teachers, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Hoover, Gabrielle C.; Dicks, Andrew P.; Seferos, Dwight S. – Journal of Chemical Education, 2021
In undergraduate chemistry curricula that include computational modeling, students may gain first-hand experience in both introductory and advanced applications of this technique. However, although students can be exposed to the predictive power of computational work, its capabilities are often limited to determining the intrinsic properties of…
Descriptors: Undergraduate Students, College Science, Organic Chemistry, Computation
Ayesha Farheen – ProQuest LLC, 2023
Molecular representations that show chemical bonding are ubiquitous in general and organic chemistry. These help in communicating chemistry concepts that are fundamental to understanding "how" and "why" molecules interact. The goal of this dissertation work is to offer an evidence-based report on the affordances and limitations…
Descriptors: Organic Chemistry, Science Instruction, Molecular Structure, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon J. Yik; David G. Schreurs; Jeffrey R. Raker – Journal of Chemical Education, 2023
Acid-base chemistry, and in particular the Lewis acid-base model, is foundational to understanding mechanistic ideas. This is due to the similarity in language chemists use to describe Lewis acid-base reactions and nucleophile-electrophile interactions. The development of artificial intelligence and machine learning technologies has led to the…
Descriptors: Educational Technology, Formative Evaluation, Molecular Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lau, Poh Nguk; Chan, Wen Loong; Li, Yuxuan – Journal of Chemical Education, 2022
As part of COVID-19 preparedness, a student-developed, Android-based app was used as a pre-laboratory learning aid for a molecular modeling laboratory in a first-year general chemistry course. A worksheet activity with trigger codes and questions related to spatial features of transition metal complexes was designed. Using the Transition Metal…
Descriptors: Visualization, Computer Oriented Programs, Organic Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Bromfield Lee, Deborah C.; Beggs, Grace A. – Journal of Chemical Education, 2021
The authors describe the construction and use of tactile models for demonstrating intermolecular forces. These models are composed of inexpensive materials and can be used in college chemistry classrooms of varying levels including general and organic chemistry. The models were designed to be paired with an accompanying activity to encourage…
Descriptors: Manipulative Materials, Models, Demonstrations (Educational), Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fried, Daniel B.; Tinio, Pablo P. L.; Gubi, Aaron; Gaffney, Jean P. – European Journal of Science and Mathematics Education, 2019
The scientists of the future will need to begin studying science to great depth, much earlier in life, in order to keep up with the accelerating pace of discovery and technological innovation. For this to be possible, engaging and child-friendly pedagogical approaches need to be developed that leverage the natural enthusiasm of young science…
Descriptors: Elementary School Science, Science Instruction, Organic Chemistry, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Bonafe, Carlos Francisco Sampaio; Bispo, Jose Ailton Conceição; de Jesus, Marcelo Bispo – Biochemistry and Molecular Biology Education, 2018
Metabolism involves numerous reactions and organic compounds that the student must master to understand adequately the processes involved. Part of biochemical learning should include some knowledge of the structure of biomolecules, although the acquisition of such knowledge can be time-consuming and may require significant effort from the student.…
Descriptors: Undergraduate Students, Biology, Nursing Students, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
D'Ambruoso, Gemma D.; Cremeens, Matthew E.; Hendricks, Brett R. – Journal of Chemical Education, 2018
Instructional videos have been prepared using Adobe Captivate software to create animated tutorials to capture instrument and molecular modeling software simulations and to allow for increased independent hands-on instrument use by students and faster training for instructors and teaching assistants. The videos are available on YouTube and can be…
Descriptors: Animation, Computer Software, Student Surveys, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Behmke, Derek; Kerven, David; Lutz, Robert; Paredes, Julia; Pennington, Richard; Brannock, Evelyn; Deiters, Michael; Rose, John; Stevens, Kevin – Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, 2018
Spatial reasoning is defined as the ability to generate, retain, and manipulate abstract visual images. In chemistry, spatial reasoning skills are typically taught using 2-D paper-based models, 3-D handheld models, and computerized models. These models are designed to aid student learning by integrating information from the macroscopic,…
Descriptors: Science Instruction, Computer Simulation, Educational Technology, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary – Journal of Chemical Education, 2016
Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…
Descriptors: Organic Chemistry, Molecular Structure, Models, Visual Aids
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4