Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Brain Hemisphere Functions | 3 |
Models | 3 |
Molecular Structure | 3 |
Simulation | 3 |
Animals | 2 |
Feedback (Response) | 2 |
Genetics | 2 |
Long Term Memory | 2 |
Maintenance | 2 |
Animal Behavior | 1 |
Brain | 1 |
More ▼ |
Source
Learning & Memory | 3 |
Author
Baxter, Douglas A. | 2 |
Byrne, John H. | 2 |
Smolen, Paul | 2 |
Alberini, Cristina M. | 1 |
Jalil, Sajiya J. | 1 |
Sacktor, Todd Charlton | 1 |
Shouval, Harel Z. | 1 |
Zhang, Yili | 1 |
Publication Type
Journal Articles | 3 |
Reports - Research | 2 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Smolen, Paul; Baxter, Douglas A.; Byrne, John H. – Learning & Memory, 2016
With memory encoding reliant on persistent changes in the properties of synapses, a key question is how can memories be maintained from days to months or a lifetime given molecular turnover? It is likely that positive feedback loops are necessary to persistently maintain the strength of synapses that participate in encoding. Such feedback may…
Descriptors: Long Term Memory, Models, Molecular Structure, Feedback (Response)
Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H. – Learning & Memory, 2016
Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…
Descriptors: Inhibition, Animals, Animal Behavior, Brain Hemisphere Functions
Jalil, Sajiya J.; Sacktor, Todd Charlton; Shouval, Harel Z. – Learning & Memory, 2015
Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due…
Descriptors: Long Term Memory, Brain Hemisphere Functions, Neurological Organization, Maintenance