NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 422 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Manuel Oliveira; Justus Brands; Judith Mashudi; Baptist Liefooghe; Ruud Hortensius – Cognitive Research: Principles and Implications, 2024
This paper examines how humans judge the capabilities of artificial intelligence (AI) to evaluate human attributes, specifically focusing on two key dimensions of human social evaluation: morality and competence. Furthermore, it investigates the impact of exposure to advanced Large Language Models on these perceptions. In three studies (combined N…
Descriptors: Artificial Intelligence, Moral Values, Competence, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Todd; Jiao, Hong – Educational and Psychological Measurement, 2023
Cheating detection in large-scale assessment received considerable attention in the extant literature. However, none of the previous studies in this line of research investigated the stacking ensemble machine learning algorithm for cheating detection. Furthermore, no study addressed the issue of class imbalance using resampling. This study…
Descriptors: Cheating, Measurement, Artificial Intelligence, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Rongjie Huang; Yusheng Sun; Zhifeng Zhang; Bo Wang; Junxia Ma; Yangyang Chu – International Journal of Information and Communication Technology Education, 2024
The innovation capability largely determines the initiative for future development of a region. Higher school is the main position for training innovative talents. Accurate and comprehensive assessment of innovation cultivation capability is an important basis of higher schools for continuous improvement. Thus, this paper focuses on assessing…
Descriptors: Models, Innovation, Higher Education, Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Thanh Thuy Do; Golnoosh Babaei; Paolo Pagnottoni – Measurement: Interdisciplinary Research and Perspectives, 2024
Complex Machine Learning (ML) models used to support decision-making in peer-to-peer (P2P) lending often lack clear, accurate, and interpretable explanations. While the game-theoretic concept of Shapley values and its computationally efficient variant Kernel SHAP may be employed for this aim, similarly to other existing methods, the latter makes…
Descriptors: Artificial Intelligence, Risk Management, Credit (Finance), Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Liang, Zibo; Mu, Lan; Chen, Jie; Xie, Qing – Education and Information Technologies, 2023
In recent years, online learning methods have gradually been accepted by more and more people. A large number of online teaching courses and other resources (MOOCs) have also followed. To attract students' interest in learning, many scholars have built recommendation systems for MOOCs. However, students need a variety of different learning…
Descriptors: MOOCs, Artificial Intelligence, Graphs, Educational Resources
Peer reviewed Peer reviewed
Direct linkDirect link
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Yibei Yin – International Journal of Web-Based Learning and Teaching Technologies, 2023
In order to study the big data of college students' employment, this paper takes the big data of college students' employment as the premise, analyzes the current employment data by establishing a DBN model, and puts forward relevant management measures, aiming to provide scientific basis for the management of graduates' employment data. The…
Descriptors: College Students, Student Employment, Data Analysis, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Rico-Juan, Juan Ramon; Sanchez-Cartagena, Victor M.; Valero-Mas, Jose J.; Gallego, Antonio Javier – IEEE Transactions on Learning Technologies, 2023
Online Judge (OJ) systems are typically considered within programming-related courses as they yield fast and objective assessments of the code developed by the students. Such an evaluation generally provides a single decision based on a rubric, most commonly whether the submission successfully accomplished the assignment. Nevertheless, since in an…
Descriptors: Artificial Intelligence, Models, Student Behavior, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Gani, Mohammed Osman; Ayyasamy, Ramesh Kumar; Sangodiah, Anbuselvan; Fui, Yong Tien – Education and Information Technologies, 2023
The automated classification of examination questions based on Bloom's Taxonomy (BT) aims to assist the question setters so that high-quality question papers are produced. Most studies to automate this process adopted the machine learning approach, and only a few utilised the deep learning approach. The pre-trained contextual and non-contextual…
Descriptors: Models, Artificial Intelligence, Natural Language Processing, Writing (Composition)
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  29