NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 81 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Giannakas, Filippos; Troussas, Christos; Krouska, Akrivi; Sgouropoulou, Cleo; Voyiatzis, Ioannis – Education and Information Technologies, 2022
Working in groups is an important collaboration activity in the educational context, where a variety of factors can influence the prediction of the teams' performance. In the pertinent bibliography, several machine learning models are available for delivering predictions. In this sense, the main goal of the current research is to assess 28…
Descriptors: Comparative Analysis, Artificial Intelligence, Prediction, Cooperative Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Rishwinder Singh Baidwan; Radhika; Rakesh Kumar – Journal of Educational Technology, 2024
Artificial intelligence technology has become widely used in many industries, including healthcare, agriculture, banking, social security, and home furnishings, due to the rise and development of this discipline. One of the newest areas of technology in the education industry is AI in Education, where extensive research supports instructional…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Stefan E. Huber; Kristian Kiili; Steve Nebel; Richard M. Ryan; Michael Sailer; Manuel Ninaus – Educational Psychology Review, 2024
This perspective piece explores the transformative potential and associated challenges of large language models (LLMs) in education and how those challenges might be addressed utilizing playful and game-based learning. While providing many opportunities, the stochastic elements incorporated in how present LLMs process text, requires domain…
Descriptors: Artificial Intelligence, Language Processing, Models, Play
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Lishan; Huang, Yuwei; Yang, Xi; Yu, Shengquan; Zhuang, Fuzhen – Interactive Learning Environments, 2022
Automatic short-answer grading has been studied for more than a decade. The technique has been used for implementing auto assessment as well as building the assessor module for intelligent tutoring systems. Many early works automatically grade mainly based on the similarity between a student answer and the reference answer to the question. This…
Descriptors: Automation, Grading, Models, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Michelle Pauley Murphy; Woei Hung – TechTrends: Linking Research and Practice to Improve Learning, 2024
Constructing a consensus problem space from extensive qualitative data for an ill-structured real-life problem and expressing the result to a broader audience is challenging. To effectively communicate a complex problem space, visualization of that problem space must elucidate inter-causal relationships among the problem variables. In this…
Descriptors: Information Retrieval, Data Analysis, Pattern Recognition, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Troussas, Christos; Giannakas, Filippos; Sgouropoulou, Cleo; Voyiatzis, Ioannis – Interactive Learning Environments, 2023
Computer-Supported Collaborative Learning is a promising innovation that ameliorates tutoring through modern technologies. However, the way of recommending collaborative activities to learners, by taking into account their learning needs and preferences, is an important issue of increasing interest. In this context, this paper presents a framework…
Descriptors: Computer Assisted Instruction, Cognitive Style, Cooperative Learning, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Graham, S. Scott – Composition Studies, 2023
The common arguments about potential student use of these technologies suggest artificial intelligence (AI)-assisted writing will damage student learning by shortcutting the writing process. There is a further worry that AI-based pedagogy will de-skill students by reducing writing to a mere editing practice. Additionally, some suggest that…
Descriptors: Writing (Composition), Writing Instruction, Language, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Divasón, Jose; Martinez-de-Pison, Francisco Javier; Romero, Ana; Saenz-de-Cabezon, Eduardo – IEEE Transactions on Learning Technologies, 2023
The evaluation of student projects is a difficult task, especially when they involve both a technical and a creative component. We propose an artificial intelligence (AI)-based methodology to help in the evaluation of complex projects in engineering and computer science courses. This methodology is intended to evaluate the assessment process…
Descriptors: Student Projects, Student Evaluation, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Beseiso, Majdi; Alzubi, Omar A.; Rashaideh, Hasan – Journal of Computing in Higher Education, 2021
E-learning is gradually gaining prominence in higher education, with universities enlarging provision and more students getting enrolled. The effectiveness of automated essay scoring (AES) is thus holding a strong appeal to universities for managing an increasing learning interest and reducing costs associated with human raters. The growth in…
Descriptors: Automation, Scoring, Essays, Writing Tests
Tiffany Barnes; Sarah Burriss; Joshua Danish; Samantha Finkelstein; Megan Humburg; Ally Limke; Ole Molvig; Heidi Reichert – Community for Advancing Discovery Research in Education (CADRE), 2024
Research and development work in artificial intelligence in education (AIED) is wide ranging and rapidly growing to support all areas of science, technology, engineering, and mathematics (STEM) teaching and learning. At the risk of hyperbole, this is potentially the most fundamentally game-changing technology for education to emerge since the…
Descriptors: Ethics, Artificial Intelligence, Educational Research, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doewes, Afrizal; Kurdhi, Nughthoh Arfawi; Saxena, Akrati – International Educational Data Mining Society, 2023
Automated Essay Scoring (AES) tools aim to improve the efficiency and consistency of essay scoring by using machine learning algorithms. In the existing research work on this topic, most researchers agree that human-automated score agreement remains the benchmark for assessing the accuracy of machine-generated scores. To measure the performance of…
Descriptors: Essays, Writing Evaluation, Evaluators, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Journal of Artificial Intelligence in Education, 2021
Many recent studies have looked at the viability of applying recurrent neural networks (RNNs) to educational data. In most cases, this is done by comparing their performance to existing models in the artificial intelligence in education (AIED) and educational data mining (EDM) fields. While there is increasing evidence that, in many situations,…
Descriptors: Artificial Intelligence, Data Analysis, Student Evaluation, Adaptive Testing
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6