Publication Date
In 2025 | 1 |
Since 2024 | 137 |
Since 2021 (last 5 years) | 364 |
Descriptor
Source
Author
Danielle S. McNamara | 6 |
Mihai Dascalu | 5 |
Dascalu, Mihai | 4 |
McNamara, Danielle S. | 4 |
Baker, Ryan S. | 3 |
Deliang Wang | 3 |
Gal, Kobi | 3 |
Micah Watanabe | 3 |
Segal, Avi | 3 |
Allen, Laura K. | 2 |
Andres Neyem | 2 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 4 |
Practitioners | 2 |
Teachers | 2 |
Policymakers | 1 |
Students | 1 |
Location
China | 14 |
South Korea | 9 |
Australia | 5 |
India | 5 |
Taiwan | 5 |
United States | 4 |
France | 3 |
Germany | 3 |
South Africa | 3 |
Turkey | 3 |
United Kingdom | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Cornell Critical Thinking Test | 1 |
Kaufman Brief Intelligence… | 1 |
Program for International… | 1 |
Test of English for… | 1 |
Trends in International… | 1 |
Youth Risk Behavior Survey | 1 |
What Works Clearinghouse Rating
Manuel Oliveira; Justus Brands; Judith Mashudi; Baptist Liefooghe; Ruud Hortensius – Cognitive Research: Principles and Implications, 2024
This paper examines how humans judge the capabilities of artificial intelligence (AI) to evaluate human attributes, specifically focusing on two key dimensions of human social evaluation: morality and competence. Furthermore, it investigates the impact of exposure to advanced Large Language Models on these perceptions. In three studies (combined N…
Descriptors: Artificial Intelligence, Moral Values, Competence, Behavior
Zhou, Todd; Jiao, Hong – Educational and Psychological Measurement, 2023
Cheating detection in large-scale assessment received considerable attention in the extant literature. However, none of the previous studies in this line of research investigated the stacking ensemble machine learning algorithm for cheating detection. Furthermore, no study addressed the issue of class imbalance using resampling. This study…
Descriptors: Cheating, Measurement, Artificial Intelligence, Algorithms
Zhenchang Xia; Nan Dong; Jia Wu; Chuanguo Ma – IEEE Transactions on Learning Technologies, 2024
As an excellent means of improving students' effective learning, knowledge tracking can assess the level of knowledge mastery and discover latent learning patterns based on students' historical learning evaluation of related questions. The advantage of knowledge tracking is that it can better organize and adjust students' learning plans, provide…
Descriptors: Graphs, Artificial Intelligence, Multivariate Analysis, Prediction
Abdessamad Chanaa; Nour-eddine El Faddouli – Smart Learning Environments, 2024
The recommendation is an active area of scientific research; it is also a challenging and fundamental problem in online education. However, classical recommender systems usually suffer from item cold-start issues. Besides, unlike other fields like e-commerce or entertainment, e-learning recommendations must ensure that learners have the adequate…
Descriptors: Artificial Intelligence, Prerequisites, Metadata, Electronic Learning
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Capability Assessment of Cultivating Innovative Talents for Higher Schools Based on Machine Learning
Rongjie Huang; Yusheng Sun; Zhifeng Zhang; Bo Wang; Junxia Ma; Yangyang Chu – International Journal of Information and Communication Technology Education, 2024
The innovation capability largely determines the initiative for future development of a region. Higher school is the main position for training innovative talents. Accurate and comprehensive assessment of innovation cultivation capability is an important basis of higher schools for continuous improvement. Thus, this paper focuses on assessing…
Descriptors: Models, Innovation, Higher Education, Evaluation
Liunian Li – ProQuest LLC, 2024
To build an Artificial Intelligence system that can assist us in daily lives, the ability to understand the world around us through visual input is essential. Prior studies train visual perception models by defining concept vocabularies and annotate data against the fixed vocabulary. It is hard to define a comprehensive set of everything, and thus…
Descriptors: Artificial Intelligence, Visual Stimuli, Visual Perception, Models
Jinsook Lee; Yann Hicke; Renzhe Yu; Christopher Brooks; René F. Kizilcec – British Journal of Educational Technology, 2024
Large language models (LLMs) are increasingly adopted in educational contexts to provide personalized support to students and teachers. The unprecedented capacity of LLM-based applications to understand and generate natural language can potentially improve instructional effectiveness and learning outcomes, but the integration of LLMs in education…
Descriptors: Artificial Intelligence, Technology Uses in Education, Equal Education, Algorithms
Monsalve-Pulido, Julian; Aguilar, Jose; Montoya, Edwin – Education and Information Technologies, 2023
The adaptation of traditional systems to service-oriented architectures is very frequent, due to the increase in technologies for this type of architecture. This has led to the construction of frameworks or methodologies for adapting computational projects to service-oriented architecture (SOA) technology. In this work, a framework for adaptation…
Descriptors: Artificial Intelligence, Information Technology, Design, Governance
Thanh Thuy Do; Golnoosh Babaei; Paolo Pagnottoni – Measurement: Interdisciplinary Research and Perspectives, 2024
Complex Machine Learning (ML) models used to support decision-making in peer-to-peer (P2P) lending often lack clear, accurate, and interpretable explanations. While the game-theoretic concept of Shapley values and its computationally efficient variant Kernel SHAP may be employed for this aim, similarly to other existing methods, the latter makes…
Descriptors: Artificial Intelligence, Risk Management, Credit (Finance), Prediction
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Il Do Ha – Measurement: Interdisciplinary Research and Perspectives, 2024
Recently, deep learning has become a pervasive tool in prediction problems for structured and/or unstructured big data in various areas including science and engineering. In particular, deep neural network models (i.e. a basic core model of deep learning) can be viewed as an extension of statistical models by going through the incorporation of…
Descriptors: Artificial Intelligence, Statistical Analysis, Models, Algorithms
Liang, Zibo; Mu, Lan; Chen, Jie; Xie, Qing – Education and Information Technologies, 2023
In recent years, online learning methods have gradually been accepted by more and more people. A large number of online teaching courses and other resources (MOOCs) have also followed. To attract students' interest in learning, many scholars have built recommendation systems for MOOCs. However, students need a variety of different learning…
Descriptors: MOOCs, Artificial Intelligence, Graphs, Educational Resources
Kubsch, Marcus; Krist, Christina; Rosenberg, Joshua M. – Journal of Research in Science Teaching, 2023
Machine learning (ML) has become commonplace in educational research and science education research, especially to support assessment efforts. Such applications of machine learning have shown their promise in replicating and scaling human-driven codes of students' work. Despite this promise, we and other scholars argue that machine learning has…
Descriptors: Science Education, Educational Research, Artificial Intelligence, Models